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ABSTRACT

Rao (1945) pioneered the use of differential gecometry in statistics by treating the Fisher
information as a Riemannian metric. Its theoretical decedents, information geometers,
Amari (1968), Costa et al. (2015), and Chen (2016), through explicit calculations, demon-
strated the induced statistical manifolds have hyperbolic space forms. This manuscript
opens an alternative line of geometric research and calls attention to the ubiquitous phe-
nomena of implied spherical space forms in statistics, which act as benchmark mani-
folds for positive curvature bounds. By developing novel algebraico-topological techniques
suitable to handle these manifolds intrinsically, it introduces significant improvements
to two prominent, seemingly unrelated, statistical work: (a) For Andrews and Mikusheva
(20164a,b), it provides a radically simplified proof and a succinct new theorem on the dis-
tance bound between a random vector and a manifold with a curvature bound; (b) For
Huang et al. (1996); Kizhner et al. (2005), it offers rigorous definitions of related concepts
and a new fundamental theory that allows smooth transforms between the HilbertHuang
transform and the Fourier transform of a time series. Through deep engagement with con-
crete statistical applications, it offers timely remarks about the methodological limitations

of information geometry. In licu of a grand synthesis unattainable at present, as empirical

Xi



ABSTRACT

patches to the methodological wounds inflicted, it offers a suite of new interactive graphi-
cal tools based on the foregoing geometric discussions, in particular, the link between the
spherical geometry and correlations, for the exploration of dynamic harmonic structures

in high-dimensional time series.

Keyworbps: Fisher information, information geometry, differential geometry, data visu-

alization, financial econometrics, multivariate time series

SuBJECT CATEGORY: Economics (0501), Statistics (0463)
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PART 1
THEORETICAL LIMITATIONS



«a mathématique est lart de donner le méme nom a des choses

différentes.”»

— Henri Poincaré, Science et Méthode (1908)

1 “Mathematics is the art of giving the same name to different things.” G.B. Halsted’s trans-

lation.
2



CHAPTER 1

MOTIVATION

The Fisher information was a Riemannian metric before it became the celebrated matrix
prescribing the lower bound on the variance of any unbiased estimator: At 25, still a student
to Fisher who had already published the Mathematician Foundations of Theoretical Statistics
23 years earlier, Rao (1945, 1997 reprint) was immediately canonized; its pioneering use of
the differential geometric method, however, is largely ignored. Though differential geome-
try has inevitably prevailed in other branches of pure mathematics and theoretical physics
that need to deal with nonlinear objects, more than seven decades after Rao (1945), it is
still not a /ingua franca in statistics—for good reasons. Information geometers blame it on
the inherent difficulty of the mathematics (Amari, 2016), echoing Hilbert’s declaration that
“physics is becoming too difficult for the physicists.”! This is rather presumptuous, tinged
with condescension: unlike what it has contributed for physics, differential geometry (and
by that token modern mathematics in general) hasn’t proven its value in statistics. Indeed,
the Fisher information, as a Riemannian metric, brings with it the whole Riemannian ge-

ometric model which consists of a dazzling array of interactive objects, manifolds, spaces,

1 The quote itself is in dispute but another documented quote from Hilbert shares the
same sentiment: “Every kind of science, if it has only reached a certain degree of maturity,
automatically becomes a part of mathematics. (Ewald, 2007)”

3



1 MOTIVATION

bundles, connections, forms, and more (Section 4). Their interactions, though meticu-
lously developed and elegantly stated, are nevertheless not a statistical theory per se: “A
theory has only the alternative of being right or wrong. A model has a third possibility: it

may be right, but irrelevant (Manfred, 1973).”

Any interdisciplinary researcher makes this risky proposal vis-a-vis relevance: he must
brazenly burden his colleagues with outlandish constructions, with nothing but an empty
promise that all undue discomfort and efforts would pay off; this in turn builds up the
expectation that is hard to fulfill because of the very nascent nature of the work. The
self-defeating proposition dooms many a researcher in search of a grand unified theory,
as evidenced by the deep and ever growing schism between statistics and differential ge-
ometry. An outcast of his own volition, he, in spite of the most genuine intentions, in-
evitably succumbs to the desire for relevance and regresses to a stale state of appeasement:
as a rarefied geometer in residence, slowly drifting away to an ever more distant orbit; or
worse still, as a mangler who spins mathematical concepts for theoretical expediency. “The
doer alone learneth:” it is high time to take out these intricate mathematical artifacts, still
mint, from their sophisticated contextual frames, and use these power tools strictly for
utilitarian purposes. “Immer mit den einfachsten Beispielen anfangen!” Following Hilbert’s
advice, I will present two modest but cogent examples where differential geometry (and
its algebraico-topological extensions) elucidates statistical and econometric practices, as
a prolegomenon to a more unified mathematical-statistical theory imagined by Hilbert,

information geometers, and mathematical statisticians (Cencov, 1978).

2 Another Hilbert quote, popularized in German by Artin’s Algebra, which translates to:
“Always start with the simplest examples.”



1 MOTIVATION

Since differential geometry is the study of manifolds, the simplest examples are space
forms, which are manifolds with constant sectional curvatures K (Figure 1.1). Information
geometers traditionally focus on the hyperbolic spaces (H”, K < 0). Through explicit calcu-
lations, Amari (1968), Costa et al. (2015), and Chen (2016) have exhibited that the man-
ifolds implied by the Fisher information—these are exactly the manifolds Rao imagined,
now rebranded as the statistical manifolds—of common distributions (normal, Cauchy,
and z-distributions) all have constant negative sectional curvatures. Since analytical sta-
tistical practices tacitly take place in the Euclidean spaces (R”) with vanishing curvatures
(K = 0), we here provide examples of the remaining third, the spherical space forms (S")

which have constant positive curvatures (K > 0).

This is not to reinvent wheels: indeed, as a most elementary geometric form, spheres
are commonplace in statistics, especially in empirical disciplines like geophysics statistics.>
Our focus is methodological; the thematic focus of spherical spaces, albeit deliberate, is
purely instrumental. In analytical statistics, a geometric object, such as a sphere, plays these
two, not mutually exclusive, roles—(a) geometric: it can be a real geometric representation

of the physical phenomenon (e.g., the Earth in geodetic statistics); or (b) statistical: it can

be used to place parametric restrictions on variables to facilitate the estimation process

3 Familiarity doesn’t imply understanding. Indeed, the Cartan-Hadamard theorem shows
that the universal covering space of a connected complete Riemannian manifold of non-
positive sectional curvature is diffeomorphic to R”. But little can be said about mani-
folds of non-negative sectional curvature. Even the 3-dimensional case has puzzled mathe-
maticians for nearly a century. Poincaré conjecture, which states “every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere,” widely known since the start of dif-
ferential geometry at the beginning of the 20th century, was not proven until Perelman’s
singular efforts in 2002—-2003. He does so by first providing an astonishingly concise proof
of a known theorem that reduces the study of a complete manifold of non-negative sec-
tional curvature to that of the normal bundle of a compact manifold, so called the “soul”
of the manifold.

5



1 MOTIVATION

(e.g., a vector with a fixed norm in all dimensions). In our examples, the spherical space
forms are a bridge object between geometry and statistics: they act as neither the static
background spaces on which parameters and observations are grounded (as in the first ex-
ample about the curvature bound) nor useful functional forms through which extra degrees
of freedom can be trimmed (as in the second example about Hilbert-Huang Transform).
Instead, they are random geometric objects accompanying each set of observations, encod-
ing and decomposing their nonlinearities: for this reason, we here call these parastatistical
geometric objects, or for short, “co-objects” for random variables. This crucial distinction,
though seemingly superficial and even cryptic at this point, will be made clear through the
concrete examples: it is precisely their hybrid geometric-statistical nature that resists full
analytic description and affords deep connections to algebraic topology, whose raison détre
after all is to keep track of geometric invariance, independent of coordinate computations.
I now refrain from commenting further on the methodological significance of uncovering
and analyzing parastatistical spherical spaces, or cospheres, through algebraic topology

until explicitly demonstrating its power in these two concrete statistical examples.

This paper is organized as follows. The two examples, the curvature cosphere theorem
and the IMF decomposition theorem, will be presented sequentially (Sections 2 and 3)
as mostly self-contained case studies, with an eye to showcase the prevalence of paras-
tatistical spherical space forms in statistics, often in disguised forms, and how modern
algebraico-topological methods fare comparing to the existing analytical method. Each
example starts with (1) a brief introduction to propel the discussion; continues with (2)
necessary mathematical groundwork before formally presenting its main findings in the
form of new theorems; and ends with (3) a short recapitulation highlighting how these new

results contribute to the community research efforts. The HHT discussion, since it’s about

6



1 MOTIVATION

an empirical algorithm, includes an additional section offering further comments on the
empirical implications of the new findings (Section 3.4). We end the paper with general
remarks about the contextual efforts reintroducing geometry to statistics, in particular the
paper’s relation to the ongoing project of information geometry (Section 4). Section 4.1
provides a brief literature review about landmark papers in the area. Section 4.2 contains

definitions of relevant key concepts in differential geometry.

Figure 1.1 Space forms:
manifolds with constant
sectional curvatures.

(@ ) G

K=1, §" K=0, R K=-1, H"
Spherical geometry  Euclidean geometry  Hyperbolic geometry
(This paper) (Classical statistics) (Information geometry)

Note. Riemannian manifolds with constant sectional curvature are called space forms.
All other connected complete constant curvature manifolds are quotients of those up to
isometry. All marked lines are geodesics, e., straight lines with respect to their respective
geometry. Local charts shown.



CHAPTER 2

CURVATURE COSPHERE THEOREM

In the first example, Andrews and Mikusheva (2016a,b) derived an upper bound on the
distance of a random variable to a known manifold. Spherical spaces naturally emerge due
to the curvature bound placed on the manifold. The authors take an analytic approach and
attempt to fully describe all objects in the coordinates of the ambient space. The laborious
process, its manifested rigor notwithstanding, relies on a daunting display of ad-hoc set
constructions and optimization problems, in addition to a structural assumption presup-
posing certain properties of the coordinate system, thus acknowledging the capability limit
of their coordinated approach. This is precisely the premise of differential geometry: that
a global coordinate system is not always tractable and structures and techniques must be
developed to handle charts that only exist locally. This paper takes this modern approach.
Instead of pinning down all points in the ambient vector space, geometric objects are con-
structed hierarchically in a coordinate-free (the so-called intrinsic) manner. In lieu of an
uncountable set of auxiliary spherical spaces in the original paper, a single cosphere with
desired properties, freed from the ensnarement of the global coordinates, is exposed for
cach observation. The novel change of perspective, along with two geometric lemmas for-

mally establishing the symmetries of the cospheres and the coordinates enveloping them,



2.1 Background

yields an incisive proof without relying on any assumption about coordinates and an ele-

gantly stated new theorem about the distance bound (Theorem 4).

2.1. BACKGROUND

Often credited as the first modern geometer-statistician, Mahalanobis (1936) defines the
measure of distance of an observation x = (xy,Xs,...,xy)" of a multivariate normal distri-

bution with mean u and covariance matrix 3,

par = (= p)Z (- p),

now known as the Mahalanobis distance. In econometric, albeit rarely taken in strictly
geometric terms, it’s often used, to test hypotheses with nuisance parameters for example.
Specifically, let 8 be a p-dimensional reduce form estimator with a known (or estimable)
covariance matrix 3 and an unknown mean 6. We are interested in testing if the model
is correctly specified via the restriction function g(#) = 0 (or equivalently, via the link
function 6(B), where B is a p-dimensional unknown parameter). The asymptotic hypothesis
test of the restriction is often based on the minimum Mahalanobis distance from the true
parameter 0y:

in (60— 00)'>"1(6 - 6y).
Jin (6= 60)'2 (0= 6o)

Since the nonlinear constraint g(f) : R¥ — R*7 is defined in the full parameter space
and has a p-dimensional kernel containing the true value 6y, Andrews and Mikusheva

(2016a,b, hereafter, AM) treats the kernel of the map as a p-dimensional manifold



2 CURVATURE COSPHERE THEOREM

S=x:x=3"20-6), g6) =0)

and converts the functional restriction to its geometric root, e., the minimum distance

between a normalized random vector ¢ = 37Y2(9 - 6,) ~ N(0, ;) and the manifold S:
PA(6,S) = min( - )/ (6~ ).
xe§

Hypothesizing a curvature bound on the manifold, AM utilizes differential-geometric
methods and offers a remarkable theorem relating the geometric property of a manifold to
the limiting distribution of an econometric statistic. The theorem reduces the bound on

the minimum distance from
pP(6,) = min(€—x)/(E-x) < (E-0)(E-0) ~ ] W

prescribed by the predominant “projection method,” e.g., Dufour and Jasiak (2001) and
Dufour and Taamouti (2005), to a tighter X;Q) distribution, thereby presenting a new test

that is “always more powerful than those based on the projection method.”

2.1.1 AM’s THEOREM

Since various novel constructions are defined in AM’s original theorem, for convenience, I
am keeping their notations and quoting their theorem in full, with minor adjustments for

consistency.

10



2.1 Background

THEOREM 1 (Andrews and Mikusheva). Let S be a regular p-dimensional manifold
in RX passing through zero. Assume that the tangent space To(S) is spanned by the
Jfirst p basis vectors. Assume that for some constant C > 0, we have ky(S) < & for all

points g € S¢.”
Then:

a. Manifold S, lies insides the set .# U D¢, where

M= (D)2 + (C- IxX@))2 = ¢

1 Before stating the theorem, the authors defined earlier that each vector x € R* has the
coordinates (x("),x(?)) where x(!) = (x1,29,...,x,)e R? contains the first p coordinates

and x?) = (xy11,%p42 . . . ;) € RE? contains the last k—p. They also restrict their attention
to “points on the manifold [S] that lie inside a (large) finite cylinder”

D= (= (M, x®): kW) < ¢ 12?2 < ¢, D e R, 1P € RF?) c RE,

and define S¢ to be “the intersection § N D¢ if it is connected or the connected parts of
SN Dg that passes through zero (Ze., the part s of SN D¢ which can be reached by continuous
paths lying in § N D¢ which pass through zero) otherwise.”

Figure 2.1 Basic setup of
AM’s theorem. -

Rk

Note. For illustrative purpose, S here is a closed 2-manifold with everywhere positive sec-
tional curvature; 7S is a tangent space at point “0”, a 2-dimensional vector space; D¢ is a
cylinder of radius C. S, is the shaded area on the manifold.

11



2 CURVATURE COSPHERE THEOREM

b. If [for any YY) in R? with ||y(V|| < C, there exists a point x € S¢ such that
XN = Y] then, for any point € € R~ we have almost surely [for brevity,
denoted hereafter by “a.s.”].

p(£,8) < max  p(§Ny), where

ueRP™*, |lujl=1

N._{XERk,X(l)ERp,zeR: }
o x = (2, zu), [xOf2 + |C— 2| = 2]

max  p(&Ny) == p(E,Ny), where T = £2)/)1£2).

ueRP* |ull=1

d. If ¢ ~ N(0, 1), we have for all x, y:
Pri_max  p(ENu) < 1€l <31 = PrigdnN) <, [l <1,

where the coordinates of the two-dimensional random vector

1= (XX ,) € R

are independently distributed,
Ng ={(z1,22) € R?: 22+ (C+ ) = C2}

[] and p, is [the] Euclidean distance.

2.1.2 STRATEGY OF AM’S PROOF

AM’s theorem relies on a series of inequalities to refine the existing bound. It accomplishes

this by a few ad hoc geometric constructions: D¢ is a cylinder with radius C; S¢ is its con-

nected intersection with the manifold; .# is the region outside of a p-sphere of radius C,

with respect to the ambient space. N, is a collection of p-spheres, indexed but a unit po-

sition vector 2 € R?7* on the p-sphere. N is the p-sphere that the random vector ¢ passes

through. NS is a 1-sphere with radius 1 centered at (0,-C).

12



2.1 Background

Even though the theorem is geometric, its proof is not strictly so. Proof for (a) relies on

its Lemma 1, which “projects” S¢ to its tangent space and defines
My = {x: (x,v)? + (C— lx—(x,v)vll)* = ¢
to construct .# as the union of all such sets:
M = Uperys, v|=1My.

Proof for (b) considers the £ — p-dimensional linear space R, = {x € R : x() = 7(1)} for

point 7 € Ng; reduces

Rn#tnD.=lx=(r, x?)eDec: [|sV)2+ (C-lxPP? > * 1o

== (', 2®) a®) < ey - IR,

and then solves the maximization problem “p2(£,x) = [|EM — 7|12 + 1€ = x@) |2 5 max
[sic.] s.t. x € R, N .# N D.” to obtain x = 7. Statements 1(c) and (d) are straightforward to

prove, once (a) and (b) are established. For (c), the proof defines

Sy = min D -2 4 € -z,
xWeR?, zeR,,
et D2+(c-2)2=C?

and differentiation with respect to u together with the “envelope theorem” yields ¢?) = zu.

Statement (d) gives a 2-dimensional reduction of (¢) through the definition of 1.

13



2 CURVATURE COSPHERE THEOREM

We can therefore summarize their strategy to establish the bound on p?(£, S) through
the following diagram (Figure 2.2). Our job now is to establish a direct link from p?(§, S)

to p3(n, N¢) (indicated by the wavey arrow).

2.1.3 CLARIFICATIONS ABOUT CURVATURES

Let’s fix the terminology about curvature. There are many different and useful ways to
describe the curvature a Riemannian manifold. We use R to denote the CURVATURE TENSOR,

which in essence measures the noncommutativity of the covariant derivative,
Ruvyiw=vV,V,w-V,V,w— ViuWs

where V,, is the Levi-Civita connection (covariant differentiation along ) and [, -] is the

Lie bracket of vector fields

X, Y(f) = X(Y(f)) - YX(f) forall fe C(M).

Figure 2.2 Diagram of
AM’s strategy of prove.

max flu) e
Il M

as. max 2(§,N,) _@s. -

p2(f, S) ﬁ ueRP -, ||u||=1lO ( ) 1(0) pz(E’N”)
a5 1(d) S as.

p5(n, NS)

2

Note. The first step (marked by 1) further relies on this lemma (their Lemma 1): “Assume
g(0) = 0. For some C > 0, assume that %g(x) is full rank for all xe S¢. If the maximal
curvature over S¢ is not larger than 1/C, then the projection of S¢ on the tangent space
To(S¢) covers the ball of radius C centered at zero.”

14



2.1 Background

Given two linearly independent tangent vectors at the same point, z and v, the SECTIONAL

CURVATURE curvature K is defined to be:

(R(w,v)v,u)
<ll, ll> <Va V) - <l[, V>2'

K(u,v) =

where (-, -) is the inner product on the tangent space induced by the metric tensor g intro-

duced earlier. In particular, if # and v are orthonormal vectors, we have the simplification

K(u,v) = (R(u,v)v, u).

A Riemannian manifold is a space form if its sectional curvature is equal to a constant K.

The Riemann tensor of a space form is given by

R ;.0 = K(8ac8ab — 8ad8ch)-

The GAUSSIAN CURVATURE, K, is the sectional curvature of a surface, used in the context
of the Theorema Egregium which establishes that the measure of the curvature of 2-surface
is intrinsic—the Gaussian curvature of a surface does not change if one bends the surface
without stretching it. It is the product of PRINCIPAL CURVATURES, often denoted by « or &,
which are curvatures in two orthogonal directions, known as principal directions, given by

the second fundamental form.

AM proposes the following definition of the (maximal) curvature at a point ¢ on the

manifold:

15



2 CURVATURE COSPHERE THEOREM

1(7(0)) 1l
kg(S) = sup ky(y,S) = sup ——=—,
/5) XeT,(S), a1>5) xer,(s), 17Ol

#(0)=X $(0)=X

(2)

where v : (e,e) — §is a curve on § passing through ¢ at y(0) and (W)* is the projection of
W onto the space orthogonal to 7,(S) and in adddition suggesting the following scheme to
calculate curvature in practice:

P an. /L
v

P
_ VLl —
kq(S) = sup Z uity V| = sup .
u=(u1,...,up)€R?, =1 w=(w1,...,w,)eR? Hzizl wiv;
132, wall=1

3)

where V; is the second derivative By%ij()f“)—this is the supremum of sectional curvatures
in all directions u;, u;, near a point «. Since the definition of curvature is unsigned, we can

assume the sectional curvature is bounded from both sides: 0 < |K]| < é

2.2. MAIN RESULTS

As demonstrated in the previous section, AM’s four-pronged theorem relies on many ad-hoc
constructions that do not always have easy geometric interpretations. Their original proof,
though rigorous, is rather cumbersome: it relies on even more intermediary constructions
of sets and side optimization problems. I now present a drastically simplified proof and a
succinctly stated theorem introducing the novel idea of cospheres, with the helping hand
from algebraic topology. Section 2.2.1 develops two theoretical results to deal with high
dimensional objects, thereby warranting the seemingly audacious step in the main proof

that reduces all irrelevant dimensions. Section 2.2.2 presents the new proof and an im-
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2.2 Main Results

proved theorem. Readers can start directly with the proof and refer to Section 2.2.1 for

further explanations on the geometry of hypersphere and factor bundles.

2.2.1 Two GEOMETRIC LEMMAS

LeEmMA 2 (Spherical shell). Let S be a regular p-manifold (p > 2) embedded in the
ambient vector space RX, where k > p + 1. Assume S has the sectional curvature

K| < é, C > 0 in each section at each point s € S. Then there exists a p-sphere,

such that:

a. S” is centered at ¢ € RX, with a radius r = C;

Figure 2.3 Principal cur-
vature comparison.

Note. Gauss curvature K of a surface at a point is the product of the principal curvatures, «;
and k9. It is an intrinsic measure of curvature, not depending on the geodesics chosen. We
can make curvature comparisons of different surfaces at a point by aligning them together
so that one principal curvature is identified k1 = .

17



2 CURVATURE COSPHERE THEOREM

b. S? intersects with S at the point 0 € SP; and

¢. For any point on s € S, we have |s—c| > 1.

Proof Let’s first show a n-sphere S” has constant sectional curvature K = rlg at each

point: one can deduce this from the typological fact that S” = x"S. Consider S” in
a R™! Fuclidean space, so that the spherical center coincides with 0. For each point
p € S", represented by the position vector v(xy,...,x,+1) normal to the tangent space,
we can form an orthonormal basis {e,~}/l::1 at the tangent space 7,,$" such that ¢; = A d.v,
where J; is a scaling factor. From the definition of sectional curvature earlier or using the
more specialized tangential curvature equation, see e.g., Petersen (2006), we then have
Kgn+1(ej, €) = Kgn(e;, €5) — (\A)) ™, with respect to their respective metrics gga+1 and ggn.

Using spherical coordinates on the n-sphere, we have

n
ge =dr* +1° Z d? and grerr = dr’ + ger.
=1
This therefore shows A; = A; = r and Kgn(e;, ¢;) = riz, since the Euclidean space is flat and

has 0 sectional curvature.

We now use the method to prove the main claim of the lemma. For each point ¢ € §
and any section given by the orthonormal vectors in its tangent space, u,v € 1,5, there
exists a circle S! in the same plane E as u, intersecting S at point ¢. Under the curvature
hypothesis of the lemma, K(u,v) = (R(u,v)v,u) < é Elementary geometry on the plane
E shows: for any $* with a radius 7 = C, we have for each point s on the intersection of S
with E s € S|g, we have |s — ¢| > r = C. The center ¢ of S' is said to be on the curvature

center side of S, if K > 0.
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2.2 Main Results

Since it’s true for each section and since the manifold is finite-dimensional, induction
shows one can at least find an open neighborhood of a point ¢ on the S, such that the

p-sphere touches the manifold at ¢ with its center on the curvature center side of §, i.e,

forallse UcS, |s—c| >,

without loss of generality, call this point 0. Suppose the opposite: there exists a point s’
on the manifold § such that |s’ —¢| < . Let y be a geodesic connecting 0 to s’. Since the
manifold is regular, y is compact (both in § and the ambient vector field), there is a finite
set of open covers for y: each with the desired property. In particular, we have such an open
cover for s, U. Using the manifold hypothesis, there are local charts (i, V) and (¢, V) at
points 0 and s respective. Therefore, for all points s € V; n Us, we have |[s —¢| > r. But

s’ € Vi n Us: a contradiction.

Remark. This is a purely geometric fact. Since the curvature of an n-sphere is reciprocal
to its radius squared, the lemma formally establishes the intuition that a mildly deformed
spherical object can still contain a smaller sphere with the same dimension, see Figure ??.
One can readily generalize the result, but let’s keep our focus on the econometric problem

at hand.

LEmMA 3 (Split of vectors bundles). Let S be a p-manifold embeddedin a k > p+1-
dimensional Euclidean space. The fiberwise quotient vector spaces RY/ TS form a

factor bundle over 8.

Proof” The ambient vector field gives a trivial vector bundle over S, E, that is fiber-wise R,

Let n’ : TS — § be the tangent bundle of S and Let 7 : £ — S be the vector bundle
19



2 CURVATURE COSPHERE THEOREM

over 8. Let f: TS — E be the fiber morphism. Locally we have the trivialization for the
tangent bundle 7 : TSy — U x R? and the corresponding trivialization for the vector
bundle 7 : Eyy — U x R*. Since we have the split, viewed as vector field decomposition,

RF = R? x R¥7, along with the following commutative diagram:

Ux R Ux R? x Rk?
TSU / EU
S /

We have the local exact sequences:
, [ f
0—» 7 >nw and 0— TBU—>EU

We can take the disjoint union of all factor fibers E,/T,S to form the factor bundle.

Remark. The proof is constructive and technical but the idea is elementary. Each point
on a manifold comes with a chart s : U; — R" that reduces it to an Euclidean space.
Higher constructions, like bundles, inherit the chart, through similar trivializations. The
Lemma does not depend on the dimensions and one can replace the tangent bundle of §
with any other vector bundle. Lang (2001) provides more details about vector bundles and
metric bundles. Exact sequence method is ubiquitous in modern mathematics. Here are

two illustrative examples to apply the method to statistics.

ExampLE 1. Let 6 € 6 be a k-dimensional variable in the full parameter space

0; B € B be a p-dimensional explanatory variables; § : U ¢ B — 6 be a link
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2.2 Main Results

function; and g : & — A be a restriction function. A parameter restriction is
valid (in the sense that model is corrected specified and could be identified) if

and only if the short sequence

0 B—'.0_-2.A 0 4)

is exact. The following statements are equivalent: 6/B is irrelevant; the structural
form g(#) = 0 and the reduce form § = 6(B) are just identified; Im6 := {0 : § =
0(B)} — {0 :g(0) =0} = Kerg.

2.2.2 MAIN PROOF AND COSPHERE THEOREM
Proof (Proof to Theorem 1). (a) S¢c ¢ M by Lemma 2. S¢ c D¢ by construction.

(b) and (¢) If ¢ € §, (b) and (¢) already true by Lemma 2 and if ¢ € 7S, (¢) in not defined
since ||€?]| = 0. Let’s now assume ¢ ¢ S and ¢ ¢ T, and let p be the projection of ¢ on
ToS. Let ¢ be the center of the p-sphere described in Lemma 2 touching § at a fixed point,
“0”. The three distinct points §, p, and 0 determines a unique plane E ~ R?. Since E is
by definition perpendicular to 7S, it contains a curve y from S connecting 0 and g, the
projection of £ on v, a circle centered at ¢ on the curvature center side of y touching it

at 0, and another circle centered at ¢’ also with radius 7 and touching vy at 0, such that c,

2 This is true because E = (¢, et), by virtue of being perpendicular to 7S, can be made
to have its first coordinate coinciding with the first coordinate of g(x) , after a change of
coordinates, if necessary. Specifically, let ¢ : R* — R be such a change of coordinates,
which makes the desired change (x1,...,x;) = (e,x5,...,x,), seen as a SO(p) rotation
of the tangent space around 0. The curve y € E N § connecting 0 to g, not necessarily a
geodesic, is the composite map g¢ ‘i1, where 71 : [0,a] — RX is the injection into the first

coordinate, while holding all other coordinates at 0.
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2 CURVATURE COSPHERE THEOREM

0, and ¢’ are on the same line: this is precisely the basic case for £ = 2 and p = 1, with
the exception that the projection of ¢ on §, where the minimal distance between ¢ and
the manifold is obtained, might be somewhere else not on E. But this is not a concern.
Possibly after switching the names of ¢ and ¢/, we can assume, without loss of generality,
(E—c| > |E-¢| and |E—c|-r > |E—¢'|, where ¢’ is the intersection of ¢ on y.? The direction

of u is uniquely given by the direction of —(¢ — ¢) and we have

3 Though not strictly necessary, Lemma 3 allows us to further explicitly factor out all irrele-
vant (k—2)-dimensions on each fiber, leaving the plane containing the geometric objects of
interest (Figure 2.5). I removed more explicit algebraic constructions here to avoid causing
any possible confusion, as the ambient space RX needs to be taken as the manifold (instead
of the manifold §) for the lemma and each fiber is identified by ¢.

Figure 2.4 N, as a tort
P x Sk

ZZSON A

2
A

—

' |
> / A
< N |
~ J ) |
N\ /

S o ,’ //’
. o < —

Note. The collection of p-sphere defined in AM’s theorem, N,, can be seen as a torus
S” x SX7_ Each vector u on the (k - p)-sphere, u € S¥7, pins down a section containing a
S? sphere. The new proof presented exploits the fact it’s a product space with the factor
S? being the relevant one for the distance comparison.
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p(£,S) < |E-q| < |- —r=p(&Ng).

The “almost surely” part is redundant.

(d) This is only dimension counting with the degree of freedom of the x? distribution
and geometry of 7 is true by construction. Decompose Rf = R? x R¥?. Since £ € N(0,1I;),
cach component is therefore an independent variable from standard normal. It’s clear its

- 2 k 2
norms in each component vector space, |n;|* = 37 & and [5,> = ¥ 11 &> follow X
and X/ip distributions respectively. By (c), the fixed center of Ng gives the desired geometry.

In fact, n can be explicitly written as the n = (£ —¢).

Stripping away all auxiliary constructions in the original theorem yields the following

statement:

THEOREM 4 (Cosphere). Let M be a p-manifold embedded (p > 2) in the ambient
vector space RK, where k > p+1. Assume S has the sectional curvature |K| < é, C>

0 in each section, at each point s € S.

Fix any point m on the manifold as the point of econometric interest. Let £ be
a standard normal random vector: ¢ ~ N(m, I},). There exists a p-sphere, S?, with

radius r = C touching M at q, centered at ¢, such that
PEM) < p(6S)). 5

Any such p-sphere S’g defined above is called a cosPHERE of M for &.
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2 CURVATURE COSPHERE THEOREM

Proof” Almost identical to our new proof for Theorem 1(b) and (c). Suffice to show such
cospheres exist for any &, not necessarily uniquely. If ¢ € M or ¢ € T,,M, the statement
is trivial, any sphere in Lemma 2 is a cosphere. Let’s now assume ¢ ¢ M and ¢ ¢ T,,M.
Let p be its projection on T,,M. Let ¢ be the center of the p-sphere described in Lemma 2
touching M at a fixed point, m. The three distinct points &, p, and 0 determines a unique
plane (Figure 2.5). The plane contains a curve y from § connecting m and ¢, the projection
of ¢ on vy, a circle centered at ¢ on the curvature center side of y touching it at m, and
another circle centered at ¢’ also with radius 7 and touching y at m, such that ¢, m, and
¢’ are on the same line: this is precisely the basic case for £ = 2 and p = 1. Possibly after
Figure 2.5 Sectional re-

duction of the curvature
bound theorem.

Note. Since the curvature bound K(u,v) = (R(u,v)v,u) < é holds for any orthonormal sec-
tion and by the spherical symmetry of S#, we can reduce the higher-dimensional problem
to the most basic 1-dimensional scenario along v (relevant curves shown in blue). Lemma
2 fails near the bottom of the manifold because of areas with large curvatures (indicated
by arrows).
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2.2 Main Results

switching the names of ¢ and ¢/, we can assume, without loss of generality, |é—¢| > |é—¢’| and
\é—c|-r > |E-¢’|, where ¢’ is the intersection of {—c on y. By construction, p(£, S? ) = |é—c|-r.
This therefore proves the claim, since p(€, M), possibly obtained somewhere else on M, is

assumed to be smaller than |¢ — ¢’| and
p(faM) < ‘f_q,| < |§_C| _r:lO(E: S?)

The geometry of y follows by constructing the coordinate system dynamically for each ¢.

K e such that the cospheres

One can always choose orthonormal basis of R* for each ¢, ¥¥ | £

are always centered at
c:—rieéﬁro Zk: eé.
=1 =p+1

This gives the center of the cosphere coordinates ¢ = -1, ® 0, = (-1,...,-1,0,...,0),
where we use the short hand 1, and 0;_, to keep track of the dimensions where the center
of cosphere is shifted by -7 and unchanged with respect to m. Note this coordinate system
centers the distribution of £ at 0z, m = 0. Since the tangent plane separates ¢ and &, ¢
always has positive coordinates dynamically in the -1, dimensions. p(¢, S? M1, = |E=c[-r=
£+ 77 =g and pl&, Sl , = 1€ 7 = €l - 1. Therefore u, = p*(&, Sy, ~ 3 and
79 = p2(, S}g) 0, ~ X/ip if the 0;_, dimensions are shifted by —7: this precisely places 1 on a
circle with the center at (0,-7) and »? has the X;% distribution, predicted by the “projection

method.”

25



2 CURVATURE COSPHERE THEOREM

2.3. CONTRIBUTIONS

This paper contributes to the ongoing efforts reintroducing geometry to statistics by bring-
ing significant improvements to an established result. Building on the remarkable work of
Andrews and Mikusheva (2016a,b) which relate a purely geometric concept, sectional cur-
vature, to the limiting distribution of an estimator, this paper drastically simplifies the
process by freeing the geometric objects from the background coordinate system and en-
coding the curvature information on the counterfactual object, cospheres. The idea of a
co-object is worth noting;: it is a gecometric object accompanying each random observation
and acts as the intermediary between statistics and geometry. The new proof along with the
accompanying cosphere theorem contributes to the existing literature in several significant

ways.

First, it yields a more direct proof. Our approach, focusing on the geometric intrinsics,
provides a new and drastically simplified proof. Since the manifold in question is the ker-
nel of some restriction map on the parameter space g(f) and § = (61,02, ...,0;) has the
natural coordinates and the curvature is obtained in these coordinates via Equations 2 and
3, AM describes all geometric constructions with this global coordinate system. This clas-
sical analytic approach integrates well with set theory (by describing set intersections with
the coordinates) and optimization theory (through differentiation with respect to these co-
ordinates). However, since geometric objects are obtained through coordinate-based cal-
culations, they tend to be stripped of geometric intuitions and as a result become rather

cumbersome to manipulate.

Second, the resulting new theorem is more elegant and does not rely on additional

assumptions about the coordinate system: one cosphere represents all the curvature in-
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formation needed for the distance bound. In AM’s original theorem, the validity of the
theorem rests on the extra assumption about the power of the background coordinate sys-
tem: “for any y!) in R? with ||y())|| < C, there exists a point x € S¢ such that x(1) = y(1)”
their Assumption 1. It further comments: “Lemma 1 shows that Assumption 1 holds quite
generally for implicitly defined manifolds.” However, this goes against the fundamental as-
sumption of a manifold: a chart is only supposed to be given locally. There is a well-known
exponentiation map descending from the tangent space from the manifold exp : 7,M — M
that yields local isomorphism between vectors in the tangent space and points on the man-
ifold, a map they are in substance utilizing in proving their Lemma 1 (and we will use in
the next section), but it is only given locally (unless we are assuming in additional the man-

ifold is a Lie group) from U x R? — U, where U is an open neighborhood on the manifold

containing p. The extra metric bound on the open neighborhood is not warranted.

Third, it fixes minor technical errors in AM’s proof. For example, in AM’s Theorem 1(c)

the vector identifying the desired maximizing sphere from their collection of p-dimensional

spheres N,, u, is defined to be u = _IIE(12)||€(2)' This is invalid if ¢ lies in R? subspace, ze., £

falls in the tangent space TS with ¢?) = 0r_p-

Most importantly, I hope to call attention to the existence of implied spherical space
forms in statistics and demonstrate the superiority of the differential geometric methods
in manipulating these objects. I will make explicit these larger points about dealing with
nonlinearity from the intrinsic geometric perspective and the deep connection between
statistics and Riemannian metrics in the concluding remarks, after the presentation of the
next more powerful example. There, algebraic topology lends support to an empirically
effective, yet theoretical groundless statistical practice but at the same time prescribes a

stern limit of what it could achieve.
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CHAPTER 3

HILBERT-HUANG TRANSFORM

In the second example, our goal is to lend theory to a theory-less practice. Statisticians at
the National Aeronautics and Space Administration (NASA), who work with predominantly
geophysical data, through practice found a data transform algorithm (officially termed the
Hilbert-Huang Transform by NASA, or HHT, since Hilbert Transform is often used in
the subsequent analyses) decomposing a time series into several simpler summable parts
(Huang et al., 1996; Kizhner et al., 2005). Each part, called an intrinsic mode function
(IMF), has more regular geometric shapes and is claimed to be easier for scientific inter-
pretations. The algorithm consists of several intuitive geometric steps but these mathe-
matically nonstandard steps lack formal definitions and resist clear-cut characterizations.
This paper answers the call for theoretical clarity initiated by its proponents more than
two decades ago. It establishes a direct link between the algorithm to the Fourier trans-
form (Theorem 7), by demonstrating how each IMF can be smoothly transformed into a
Fourier basis (Lemma 6). As the proof demonstrates, the Fourier transform can be seen
as a canonical curvature decomposition, from an arbitrary square-integrable function into
a series of constant functions on the circle, each identified by its wrapping number. Just

like the first example, accompanying each time series, there is an implied spherical space
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(1-dimensional), a cocircle, where an observation on the time series is compared to a point
on the cocircle indexed by its multiplicity, or the wrapping number of the path between
the point to a base point. Since NASA researchers in practice work with time series of su-
perimposed cyclic functions, the algorithm therefore provides a heuristic way to identify

relevant wrapping numbers.

3.1. BACKGROUND

Dissatisfied with the Fourier Transform and the computational companion, the Fast
Fourier Transform (FFT), due to their strong assumptions about the source data,! re-
searchers at NASA Goddard Space Flight Center (GSFC), developed and commercialized a
novel data transform algorithm termed officially, the Hilbert-Huang Transform (HHT). All
HHT’s empirical successes only make it more urgent to investigate its mathematical limits.
Huang is forthcoming about the method’s shortcoming: by his own admission, we have no
theory to support the adaptive data analysis methodology (Huang and Pan, 2006). Since
the Hilbert spectral analysis step of the HHT is well understood mathematically, we focus
our attention on the sifting process, which is an empirical procedure to extract temporal
features, represented from the IMFs, from the graph of a time series. This is not a straight-
forward task: since the HHT makes no refutable claims, there is no claim to prove nor test
to run. It’s tempting to dismiss the HHT as statistical tea-leaf reading but it doesn’t offer
help to the task at hand—to elucidate and guide the common practice from a theoretical

point of view.

1”[Such as linearity, of being stationary, and of satisfying the Dirichlet conditions (Kizhner
et al., 2005)”
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3 HILBERT-HUANG TRANSFORM

I present a novel application of an algebraico-topological idea, homotopy, to the set-
ting and an elegant theory to reduce the HHT to the Fourier Transform by homotopically

transforming each IMF to a basis in the Hilbert space. This not only lends a solid theo-

Figure 3.1 An example of
the sifting process.

Step 1. Start from an IMF candidate func- Step 2. Identify the set of local maxima {A} ..
tion A. Indicated by triangles.

MW \4!)1’)»{\»,“\/”' |

Step 3. Generate a cubic spline .{h} that Step 4. Repeat Steps 2 and 3 for local min-
sequentially connects the points of {A} . ima {(Aa)_.

IR

Step 5. Obtain the mean curve by simple av- Step 6. Obtain an update for the IMF can-
eraging: m(t) = (A} +.7{h}-). The can-  didate function &’ by subtracting the mean:
didate function 4 is declared an IMF if m(¢) A'(t) = h(t) — m(¢). Go to Step 1 or stop if

1s zero. some chosen stoppage criterion is met.
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retic support to the serendipitous procedure but also provides practical guide as to where
the process might be most useful. It might not seem immediately obvious how the HHT
is at all related to the foregoing econometric discussions of the curvature bound. This is
precisely the point of the paper—that the phenomenon of curvature bounds, in spherical
space forms, arises naturally in many problems, often in disguised forms, due to the funda-
mental nature of the geometric restrictions placed on the parameter space, intentionally or
inadvertently. Same geometric constructions will reappear in this section and I will make

the larger point in the concluding remarks.

The HHT is the two-step process introduced by Huang et al. (1996) and subsequently
popularized by the author and his collaboration for applying the Hilbert transform on the
intrinsic mode functions (IMF), which are obtained recursively through the sifting process
(also known as the empirical mode decomposition method) from a time series of observa-
tions, usually 1-dimensional, up to some stoppage convention. The HHT method trumps
traditional Fourier and wavelet transforms in analyzing spatial-frequency data of mostly
nonlinear and non-stationary? data where the Fourier transform, notwithstanding the full
backing of mathematical rigor, does not yield satisfactory empirical results, according to its
proponents. Since its introduction, the HHT has been applied to time series in diverse dis-
ciplines from empirical signal-processing fields like imaging processing (Hariharan et al.,
2006) and speech recognition (Huang and Pan, 2006) to more theoretically driven fields
like financial time-series modeling (Huang et al., 2003; Li and Huang, 2014). Various mod-

ifications and extensions, building on the sifting process, have been proposed: the HHT

2 Stationarity, the common terminology used in the HHT literature, means the amplitudes
of the empirical modes implied change over time in this context, in contrast to the basis
of the Fourier transform.
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3 HILBERT-HUANG TRANSFORM

method has continuously generated active research interests (Chen and Feng, 2003; Parey

and Pachori, 2012; Guang et al., 2014).

The sifting procedure is intuitive and easy to illustrate. Figure 3.3 outlines the algorithm
and Figure 3.1 illustrates the process. Readers can refer to Huang et al. (1996) for more

detailed description of each step.

Figure 3.2 Comparison
between Fourier, wavelet,
and HHT analyses.

Fourier |Wavelet HHT
Basis fixed, infinite adaptive, finite
Theoretical base |mathematical empirical
Linearity yes no
Stationarity yes no
Presentation frequency time-frequency

Note. Adopted from comparison table from Huang and Wu (2008).

Figure 3.3 The sifting al-

gorithm.
’hozx‘—ﬂhl‘—ﬂhg‘e oo | > =
a. Start from an IMF candidate function 4, e.g., a time series.
b. Identify the set of local maxima {A}.
c. Generate a cubic spline .”{h} () that sequentially connects the points of {4} .
d. Repeat (2) and (3) for local minima {A}-_.
e. Obtain the mean curve by simple averaging: m(t) = 1(S(h)4(¢) + S 1-(1)).
f. Declare the candidate function A(z) an IMF c, if m(¢) is zero.
g. Obtain an update for the IMF candidate function /4’ by subtracting the mean: /#’(z) =

h(t) - m(2).
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3.2. MAIN RESULTS

I now present homotopic theory to smoothly retract the HHT to the Fourier transform,
which is the only available convergence theory on the functional space. Section 3.2.1 re-
frames the setting in mathematically and derives a simple identification criterion for the
IME, crucial for subsequent proofs. Section 3.2.2 introduces the idea of homotopy, com-
monly known in the algebraic topology community and uses it proves a technical lemma
that shows each IMF can be smooth transformed to a unique Fourier basis, identified by
an integer. I do so geometrically and in a self-contained exposition. Section 3.2.3 at last
puts the elements in a deceptively simple theorem that shows the deep connection between

the HHT and the Fourier Transform.

One regularization assumption. For convenience, we can assume f{0) = f{7) = 0 and
#{h}+ = #{h)_. This is not a strong assumption for the time series under investigation.
Since we are interested in obtaining the intrinsic empirical modes, whose amplitudes and
frequencies are driven by the physics of the underlying process, we may trim the end points
(by discarding a few observations) without affecting the sifting process. The empirical ex-
ample in Section 3.4 further justifies the assumption: in practice, the time series interested
is typically long and the low-frequency (comparing to the observations) IMFs generally do

not have any scientific significance.

3.2.1 IMF IDENTIFICATION CRITERION

Huang et al. (1996) defines a smooth function to be an intrinsic mode function (IMF) if it

satisfies the following two conditions:
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a. In the whole data set, the number of extrema and the number of zero-crossings must

either be equal or differ at most by one; and

b. At any point, the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero.

This is the standard definition used by the HHT literature but not rigorous enough for
further discussions. Given any smooth function A(z), denote the set of its local maxima
by {A}; local minima by {A}_, and zero crossings by {h}y. Let {h}., the set of local extrema,
be the union of {4}, and {A}_: (A} = {A}+ U {h}-. Given an ordered set M, a spline .M
of order-n is a smooth function, defined piecewise as polynomials of order n. Given any
smooth function A(z), we may form splines .{h}, and .”{h}- from the sets of function
h(t)’s local maxima {A}; and its local minima, respectively. Call these splines, the upper
envelope spline and the lower envelope spline, respectively. There is no canonical way to
form splines of a given degree of polynomials. A cubic (Ze., a order-3) spline is commonly
used via the cubic B-spline and the cubic Bézier spline method. Indeed, it remains an open
question of the HHT research to determine the best among these spline methods (Huang
and Shen, 2005). For demonstrating purpose, we use the monotone cubic Hermite spline
according to the method of Fritsch and Carlson, implemented as splinefun in R (Fritsch

and Carlson, 1980).

We can simplify the two conditions of the IMF with the notations presented, which
shows the first condition, though useful as an easier necessary condition to check, is re-

dundant in the definition.
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THEOREM 5 (IMF Identification Criterion). A function h(t)is an IMF if and only

if it has symmetric envelope splines:

()| = [ 1),

Proof” This is the second and the only other condition of the definition of an IMFE. Given

a smooth function A, the first condition of an IMF can be written as:

[#AYy + B — #A)o| < 1.

Suffice and easy to show by induction, this inequality holds when .#{h}, = .7 {A}_.

The extrema counting condition is a necessary condition for the second condition. As
a weaker criterion, it characterizes the basic shape of the envelope splines. Declare func-
tions violating the condition functions with degenerate envelope splines. Given a smooth
function A, the second condition in our notation requires .#{h},. = —{h}-. This is a
very strong condition: given an upper envelope spline, the lower envelope spline is unique
defined. Call a function conforming to the condition a function with symmetric envelope
splines. One may deduce the non-degenerate envelope condition from the symmetric enve-
lope condition easily for example through induction. Yang and Yang (2009) makes a similar

point.
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3.2.2 Homotory

The condition specified in Theorem 5 is rather stringent. Since the function under consid-
eration is assumed to be arbitrary, there is no a priori theoretical assurance of the needed
symmetry which requires its upper envelope spline to match its lower envelope spline. In
order to obtain an IMF for a function, a heuristic stoppage condition must be employed
to declare the envelope splines are symmetric “enough”; the hypothesized condition of the
definition is met; and an IMF is produced. In each failed iteration where no IMF is pro-
duced, an asymmetric part of the function—that is the mean of the upper and the lower

envelopes—is subtracted from the function and moved to its residue. Since all IMFs have

Figure 3.4 Convergence
patterns of the sifting pro-
cess.

Note. Blue lines converging inwards are enveloping splines generated in the sifting process
(see Theorem 5). The black line with greater amplitudes is the original time series. The
IMF identified, by virtue of having symmetric envelops, is the inner most black line.
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symmetric upper and lower envelopes, the sifting process can be though as a method to
“symmetrify” a function, by discarding asymmetric parts iteration by iteration until the
resulting envelopes are symmetric enough according to the stoppage condition. Figure 3.4
illustrates a typical run of the sifting process. Blue curves are the envelope splines wrap-
ping the function. The sifting process warps the function, until it is sufficiently symmetric,
shown as the blue curve contained in the clusters of symmetric envelope splines. In geom-

etry, the continuous warping process is called a homotopy.

DEFINITION 1. A HOMOTOPY between two continuous functions f and g from
a topological space X to a topological space Y is defined to be a continuous
function H : X x [0,1] — Y from the product of the space X with the unit

interval [0, 1] to Y such that, if x € X then H(x,0) = f(x) and H(x, 1) = g(x).

Continuous functions f'and g are said to be HomoToPIC if and only if there

is a homotopy H taking f to g.

Figure 3.5 The letter
forms A and O are homo-
topic, but not with B.

Note. Contracting the outer edge and expanding the inner edge gives a homotopy from 4
to O. But there is no homotopy from A4 to B.
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3 HILBERT-HUANG TRANSFORM

Figure 3.5 further illustrates the idea. It’s clear that homotopy is a equivalence class. Let
f,8 :10,1] — X be two paths in X. We can compose the paths by letting transverses first f
and then g. Consider in particular a function f'starting and ending at the same point x: its
path is a loop and x is the basepoint. The set of all homotopy [f] of loops at the basepoint
x is call the FUNDAMENTAL GROUP of X at , denoted by 1 (X, x). Let /& be a path from x to
X'. For each loop f € m1(X,x), the conjugacy by A, Afh™!, gives a loop in 1 (X, x’). Since
the conjugacy is isomorphic for simply-connected spaces, we shall drop the basepoint from

the notation.

Lemma 6 (IMF Homotopy). Every IMF is homotopic to a constant function
wrapped on a circle n times in either the clockwise or the counterclockwise direc-

tion.

Proof’ The proof breaks into two parts: (1) I first show any loop on $* is homotopic to the
composite of single loops—this step is technical but standard; and (2) I then show any

IMF is homotopic to a loop on a circle.

(1) Let p be the canonical descending map that sends a point on the real line to a point

on the circle:

p:R>SL s 2™,
Define w,(s) to be the n-times self-winding map:
wn(s): 8T = S s+ (cos2mns, sin 2mns), 1)
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3.2 Main Results

which gives a loop at a basepoint say (1,0) on the complex plane. Observe [w1]? = [wy],
since the homotopic equivalence stated earlier. Let w, : I — R be the map s — ns, such

that w, = pw,. The map @, is said to be the lift of w, and R the covering space of S'.

For each neighborhood Uj of a point on the circle, s € 1, p~! lifts U to a disjoint union
of n open sets in the covering space. If we fix both x and its lift X € p~!(x), we can uniquely
lift each loop f starting at x in the base space to a path fstarting at that specified lifted

point X in the covering space.’

Let £ : [0,1] — S! be a loop starting at the basepoint s and let fbe the unique lift
starting at 1. By definition, f € m(S?,x) and by construction, pf(l) = f(1) = s, s0 s is
listed at some integer n. But w, is the loop constructed above in R from 0 to n. Therefore
(1- t)f+ tw, gives a homotopy from fto w;, and composing it with p gives a homotopy in

the base space from f to wj,. This therefore shows [f] = [wp].

To show [f] uniquely determines n. Suppose the contrary: f is homotopic to both w, and
wm, for some m # n. But homotopy is transitive, so lifting the homotopy yields w,, ~ f ~ wy

in the covering space. Yet f(1) is uniquely lifted at n, so m = n, a contradiction.

This therefore shows every loop in S' at the same basepoint is homotopic to w, for a

unique n € Z and fbe a lift at 0.

3 The proof follows the introduction of the isomorphism between the first fundamental
group of a circle to the infinite cyclic group generated by the homotopy class of the single
loop on the circle (Ze., 771(51) ~ 7) in Hatcher (2001). Readers can refer to the famed
exposition for more relevant technical details.
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(2) Let A(x) be an IME. By Theorem 5, it has symmetric envelope splines g(x) := {h}, =
—{h)-. The map F, = (1 - 0)h(x) + t(g"'h)(x) gives a homotopy from A(x) to a loop
wrapped around a circle of radius 1. Changing of parameter ¢t = x/7T gives the map A(7t)

hypothesized in (1). This therefore proves the claim.

The proof is technical but the intuition is clear (Figure 3.6). The sifting process itera-
tively sifts for components with symmetric splines—these are precisely functions that are
homotopic to loops on a circle. The significance of these loops is established in the follow-

ing theorem.

3.2.3 IMF DECOMPOSITION

TuroreMm 7 (IMF Decomposition). Let f{t) be any square-integrable function.

There extists a countable set of IMFs {w,};cz such that

where ¢;(f, w;) is a constant over t, for each i € Z.

40
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Proof This is immediate from Lemma 6. The n-times selfwinding maps {w, = ¢2™* : n € Z),
constructed in the lemma are all IMFs with constant envelope splines. Define w () = ¢ 2%

and the inner product between two functions:
2m -
(f, 8 = ; Ax)g(x) do.
Notice w, are precisely the orthonormal basis for the Hilbert space .#2([0, 2]) with the

inner product defined above, which admits the Fourier series decomposition:

Figure 3.6 Homotopic re-
duction of a function to a
loop on a circle.

Note. The descending map p is represented as the helix in 3-d space. An arbitrary function
of is shown in black and the n-times self-winding map is shown in blue. In this illustration,
n = 5, if we define clockwise winding as positive. We make the map p : R — S! clear by
first embedding it in R® via s € S'  (cos 2ms, sin 27s, s) and then projecting it down to
R?via (x,y,2) = (x,y).
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f: i (fawn>wn-

n—=—oo

with the Fourier series defining to be

27 .
¢ ={fron) = flx)e 2 dx,
0

3.3. CONTRIBUTIONS

This paper contributes to the HHT literature in several significant ways. First, it formalizes
a new identification criterion for the IMF that is more precise and conducive for theoret-
ical discussions (Theorem 5). Second, it introduces the idea of homotopy to the nascent
theoretical research of the HHT. The idea is instrumental in mathematics to prove vari-
ous geometric invariances and fundamental for the constructions of other crucial modern
mathematical objects like homology and, I believe, will set further theoretic discussions
of the HHT on a more rigorous footing. Third, by integrating these elements, it provides
an answer to the call for theoretic justification from the HHT literature, e.g., Huang et al.
(1996); Huang and Pan (2006); Kizhner et al. (2005), in the form of a new equivalence the-
orem (Theorem 7, along with Lemma 6) which establishes HHT’s deep connection with

the Fourier transform.

The Fourier transform can be seen as the sifting process in the limit; the sifting process, a
bastardized Fourier transform around the “adaptive” basis. The n-times self-winding maps,
{w, = 2™, give a basis to the infinite-dimensional functional space and allow all square-
integrable functions to be decomposed in these basis. In practice, however, most time series
HHT researchers interested in come from physical processes and can be represented by
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a small set of basis—the task now becomes to identify these basis. Since each of Fourier
basis is an IMF and can be represented by a loop starting at the same point around a
circle, the symmetric envelope condition in Theorem 5 sifts out relevant loops from the
infinite possible set of loops. If we allow the radius of the said circle to expand and contract
according to the envelope spline g(x) = S{h}; = -{h}-, any IMF is homotopic to the
composite loop gw,. Since in Fourier theory, all loop types in both looping directions are
needed to guarantee convergence for an arbitrary function, this in particular shows any IMF
“convergence” is constructed by allowing the basis to vary with the observations. This in
particular shows any general functional decomposition theory on IMFs (obtained through

the sifting process or otherwise) is equivalent to the Fourier transform.

We are now in the position to address the unanswered theoretical questions posed by
the originators of the sifting process in Kizhner et al. (2005) without relying on further

conjectures about the statistical properties of the process:

“[(a)] Why is the fastest changing component of a composite signal being sifted out first
in the EMD sifting process? [(b)] Why does the EMD sifting process seemingly converge
and why does it converge rapidly? [(c)] Does an IMF have a distinctive structure? (d)
Why are the IMFs near orthogonal?”

a. Lemma 6 shows any IMF is homotopic to a loop on a circle. Fast changing IMFs have
higher wrapping numbers. If we instead fix the wrapping number and allow the radius
of the circle to expand and contract, a fast changing IMF is wrapped around a smaller
circle. Since the sifting process is starting from the outermost envelopes, what have
been enveloped are the remaining IMFs looped around smaller circles. This therefore

explains why fastest changing components are sifted out first.
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b. Convergence is true by construction, especially after the employment of a slack stoppage
condition. We observe faster convergence comparing to the Fourier transform because
of the particular nature of the time series under consideration. Fourier transform re-
quires basis of all wrapping numbers in order to achieve convergence for an arbitrary
function. Yet the time series under consideration are observations from cyclic physical
processes. One can easily construct counterexample where the sifting process fails to

give rapid convergence, or any meaningful convergence at all.

c. This is the content of Lemma 6: all IMFs can be homotopically transformed into Fourier

basis.

d. This is due to the fact the Fourier basis are orthogonal:

(wm,wy) =0, forallm=+n.

3.4. EMPIRICAL EXAMPLE

We are now ready to address the empirical application of the HHT through a well-studied
example. I have argued in the previous section that an alternative general convergence
theory of functional decomposition through the sifting process is not possible. Since the
HHT makes no statistical claim, any refinement of the theory must be grounded on a
scientific theory. Indeed, in the hope to verify the usefulness of the HHT, evangelists of
the theory have tested it on many time series with distinct features and well-understood

data generating process. Among them, the LOD data is a most celebrated example.

Some information about the data source and the scientific context. The Earth Orien-

tation Center of the IERS (International Earth Rotation and Reference Systems Service),
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located at the Paris Observatory, provides to the geodesy community the international ref-
erence time series for the Earth orientation parameters (EOP), called “IERS C04” (Com-
bined 04). The Universal Time (UT1) parameter contained tracks the Earth’s rotation in
time. Because the Earth’s rotation is influenced by large-mass events, e.g., the sea currents,
UT1 is not linear with respect to Coordinated Universal Time (Ze., the atomic time). The
excess revolution time, measured in milliseconds, is called length of day (LOD). We ob-
tained the data through Paris Observatory IERS ICRS Center’s website and replicated the
result of Huang and Pan (2006) in Figure 3.7. As an example of the power of the HHT,

Huang and Pan (2006) documents the following data features extracted by the IMFs:

a. IMF1 has a 14-day period and a 19-year modulation, representing the semimonthly

tidal cycle and the Metonic cycle;*
b. IMF2 is mostly high-frequency weather storms; and

c. IMF3 has a 28-day period, representing the monthly tidal cycle, and smaller amplitudes

in El Nifio years.>

From a statistician’s point of view, these features could be readily seen in the original
time series and made obvious through standard spectral analyses. Any proponent of an
empirical method needs to confront the confirmation bias. Huang and Pan (2006) though

documents noticeably sharper changes in amplitudes after early 1980s in for example IMF1

4 A period of 19 solar years is almost exactly equal to 235 synodic (lunar) months, first
noted by the polymath Meton of Athens.

5 The Oceanic Nifio Index (ONI) is one of the primary indices used to monitor the El Nifio-
Southern Oscillation (ENSO). NOAA (National Oceanic and Atmospheric Administration)
uses it to identify El Nino (warm) and La Nina (cool) events in the tropical Pacific, though
the agency uses the HHT to construct the index and amends the classifications.
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and hypothesizes that this “may be attributed to the change in the density of data,” does
not however offer explanations to other apparent data features. Since the first two IMFs
are dense with diverse fluctuation patterns over time, we can iterate the sifting process
multiple times to investigate their empirical mode composition, see Figure 3.8. These iter-
ated IMFs consistently contain Gaussian wave patterns at late 1980s and mid 1990s: these
patterns are not immediately apparent in the original time series. However, whether they
are important data features or spurious patterns generated by the choice of splines and

ending conditions can only be answered by earth scientists.

This paper provides a rigorous theory explaining why the transform yields useful results
for its proponents but at the same time yields a stern limit of what it can achieve for
an arbitrary time series. So when will the HHT be useful? Until it is not. This is not to
dismiss the empirical value of the HHT. However, our job as mathematical statisticians
ended after characterizing the mathematical nature of the method in the preceding section.
A shortcut needs no theory to be useful and no theory can make a shortcut more correct
without overparameterization, which only defeats its purpose qua shortcut. Since the HHT
is a heuristic process without substantive claims, it is far more fruitful to take the handy
hints of its results to theorize the underlying physics rather than elaborating further on the
algorithm itself in the hope to make its results more credible. There is no magic algorithm
for science. Box’s warning about overelaboration applies: “Since all models are wrong the
scientist cannot obtain a ‘correct’ one by excessive elaboration. On the contrary following
William of Occam he should seek an economical description of natural phenomena. Just
as the ability to devise simple but evocative models is the signature of the great scientist so

»

overelaboration and overparameterization is often the mark of mediocrity. (Box, 1976)
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Figure 3.7 Empirical
mode decomposition of

the length-of-day data.
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Note. The original time series of the IERS LOD observations from 1964 to 1999 is shown
in the top panel. The remaining nine time series are IMFs identified through the sifting
process. The plots of the IMFs are not to the same scale (actual scales noted on y-axes).
The parameter, UT1 — UTC, is part of the Bulletin B EOP Combined Series C04, under
2014 International Terrestrial Reference System (ITRS2014). El Nino years shaded in blue
(ONI>1.5), see Climate Prediction Center (2018).
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Figure 3.8 Three more
iterations of the empirical
mode decomposition.
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Note. We iterate the sifting process three times (from top to bottom) on IMF1 (left panel)
and IMF2 (right panel), identified in Figure 3.7. For convenience, only the first three IMFs
are included for each iteration, since the rest of IMFs do not have significant amplitudes.

48



CHAPTER 4

DISCUSSIONS

The spherical space form is ubiquitous in statistics, though often in disguised forms. As a
manifold with a constant sectional curvature, it serves as an indispensable geometric ref-
erence to study nonlinear problems in statistics. In the first example, it emerges naturally
as the benchmark space, due to the curvature bound placed on the manifold under investi-
gation. In the second example, it provides the geometric representation of the basis of the
Hilbert space as well as their empirical counterparts, the IMFs. Unlike it is in a Euclidean
space, a vector in a curved space cannot be moved about freely through the usual arith-
metic of coordinates. The innocuous statement has serious consequences. Losing sight of
this fundamental restriction leads to a cumbersome proof that structurally depends on
an unproven assumption alleviating this restriction in the first example and a theoryless
algorithm that essentially attempts to bypass this restriction in the second example. Dif-

fernetial geometry is the solution, even though our interest is strictly statistical.

The greatest lesson of differential geometry is the idea of local trivialization. A manifold,
with its nonlinear global properties, is always reduced to Euclidean spaces locally with the
so-called charts. Even though charts collectively are known as the atlas of the manifold

and we are assumed to be able to travel over a manifold freely with the atlas by stitching
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up patches of the charts together, the manifold however is not assumed to have global
coordinates. In other words, differential geometry provides the needed tools to study a
manifold without relying on any particular embedding in a vector space. This idea extends
to higher constructions like tangent bundles. A vector bundle, when needed to be expressed
in coordinates, is always done so through “trivializations”—no matter how complicated
it transforms over the whole manifold, locally it is trivialized as U x E, where U is an
open neighborhood on the manifold and E is a vector space. Algebraic topology takes this
step even further and completely dispenses with charts. The most important properties of
Figure 4.1 Statistics from

differential geometric
point of view

Statisti Differential
tatistics Geometry
Pointwise ~
Density (ﬂ x; )Q()Zx Structures Bundles  Sections N )
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Area h(ox; 0)dx;dox; i\ Ep @i (& N\ E) Forms
: . ® Direct Sum
Form flx;0)dxy...dx;e | NTE, —— ATE* —— I(\TE") le];e_i:eor;&al
/\ Wedge
Function/f E « Pr U4
Density S 0) © a £ " T(E) Bundle
x Dualization
Observation X €| Ep- E > T(E) B\fleg(ti(l)éi
m Projection
Parameter 6 = P———>M Manifold

1 1-dimensional objects shown, higher dimensional objects can be con-
structed analogously, e.g., with Cartesian product x and tensor product ®.

1 The tangent bundle 7M1 is the most important example of a C*-vector
bundle.
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geometric objects and invariances of smooth maps between them can often be described

algebraically (so-called intrinsically) without referencing any coordinate, local or global.

As Rao (1945) demonstrates, statistical inference exploits the nonlinearity of a func-
tional form. Since differential geometry is the mathematical language of nonlinearity, to
any statistician with modern geometry background, the lure for an integrated geometric
statistical theory is immense. Almost all statistical objects have straightforward counter-
parts in differential geometry: Parameters under restriction can be thought of as a regular
manifold; observations as points in some vector bundle over the manifold; probability
densities as differential forms; expectations as integrations over vector fields; parameter
estimation as fiber identification (Figure 4.1). If only there were a unified geometric statis-
tical theory, any statistical confusion of a geometric sort, as demonstrated in this paper,
could be completely avoided! Indeed, this parallel construction project is the basic research
agenda of information geometry. The vision is clear; the impact would be monumental; and
even the journey seems noble and idyllic. But in spite of Rao’s pioneering work, Hilbert’s
spiritual guidance, and the dedicated and persistent work of talented researchers, these

efforts by all measures have stalled.

In my opinion, the history of Esperanto, the ill-fated universal language, provides a cau-
tionary tale. Zamenhof, Esperanto’s creator, shares information geometers’ vision: “Were
there but an international language, all translations would be made into it alone [...] and all
nations would be united in a common brotherhood. (Zamenhof, 1889)” Yet in spite of gen-
erations’ efforts, no work of cultural significance has been produced, save translated work
that the language is designed to avoid. Statistics and differential geometry are in essence
two different languages. Even though the latter has more natural expressions for nonlinear

phenomena and affords valuable geometric insights through its lexicon, the quixotic at-
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tempt of interdisciplinary researchers in information geometry ignores the historical con-
tingencies of scientific research qua human endeavor: Fisher (1922) has set statistics on
its own drift; occasional inconveniences cannot turn the tide on the parting disciplines.
Hilbert’s declaration that any mature science automatically becomes integrated with math-
ematics might very well be true but maturity is a natural process and it comes with growing
pains. This paper remedies these pains rather than offering a prescription for premature

integration.

4.1. LITERATURE REVIEW

Though Mahalanobis (1936) first gives the measure of distance of an observation x =
(x1,%2, ...,xy5) of a multivariate normal distribution with mean p and covariance matrix
2,

par = (= )'Z 7 (x—p),

now canonized as the Mahalanobis distance and Bhattacharyya (1943, 1946) extend the
geometric idea of the Mahalanobis distance to a measure of divergence between two popu-
lation, it is Rao (1945) who first explicitly introduces to statistics the idea of a Riemannian
metric (in the form of Fisher information) and the associated geodesic distance (called the
Rao distance) on the parameter space (ie., the Rao space) viewed as a differential manifold.
The choice of metric breaks oft from the geometry literature and is influenced by Fisher,
who presented a full account of the foundations of theoretical statistics in an extraordi-
nary exposition, Fisher (1922), wherein the expected information quantity was used and
formally presented shortly after (Fisher, 1925, 1990 reprint). Established as “an unbroken

link in the continuing evolution of modern statistics (Pathak, 1997),” Rao essentially ex-
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tends the asymptotic concepts of consistency, efficiency, sufficiency, and information loss

introduced in Fisher (1922) to finite samples.

Efron (1975) revives his geometric line of investigation by introducing the concept of
“statistical curvature,” which quantifies how similar an arbitrary one-parameter family of
curves are to the exponential family: the quantity is of statistical interest because the MLE
for a vector parameter is a sufficient statistic only for multiparameter exponential families
(Fisher, 1922, 1934). As its accompanying discussant paper, Reeds (1975), similarly ar-
gues, since Rao (1945) establishes the Fisher information as a Riemannian metric, earlier
results (Huzurbazar, 1950, 1956; Mitchell, 1962; Holland, 1973) in their collaboration
constructing explicit matrix expressions of the transformations of the Fisher information
in orthogonal parameters, in fact implicitly seek to construct an affine connection in a mov-
ing orthonormal frame—an archetypal differential geometer question—and Efron (1975)
is the “logical successor” to present a more cogent differential geometric picture to statisti-
cal estimation. Dawid (1975, 1977), citing Hicks’s (1965) emphatic caution against explicit
coordinate-dependent approach to apply differential geometry to the study of statistics,
sketches out Efron’s main arguments in coordinate-free languages and gives the definition
of the Efron connection, implicitly used in Efron (1975). Applying the idea of “statistical
curvature,” Efron (1978) and Efron and Hinkley (1978) describe some geometric results
relating the observed and the expected parameter spaces of the multivariate exponential

family in the econometric context of assessing the accuracy of the MLE 6: to what extent

1T couldn’t find relevant quotes from the source and can’t independently verify the claim
but as the Huzurbazar-Mitchell-Holland explicit construction of the Fisher information
matrix transformations illustrates, a coordinate-free approach of differential geometry
could avoid cumbersome calculus computations caused by the need to keep track of co-
ordinate changes and as a result often gives cleaner proofs to questions of existence and
invariance.
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~1in the variance bound for

can the Fisher information /(0) be replaced by 78022 log flx; 0)[,_5

—

02

Encouraged by the success of Efron and his collaborators, Madsen’s thesis (1978; 1979)
discusses their implications on assessing the second order estimation accuracy of the MLE
and competing estimators; Kass’s thesis (1980) develops similar geometric ideas for the
model space by focusing on the Jeffreys priors, which is proportional to y/det7(d) and by
construction invariant under reparameterization of the parameter vector 6 (Jeftfrerys, 1998
reprint); and Amari (1982a,b), synthesizing his earlier notes (1968; 1980) and Efron’s work
on one-parameter family of curves, presents to a larger audience a full multiparametric
theory of curved exponential families with new forms of “curvatures.” Barndorf-Nielsen
et al. (1986) gives a nontechnical account of the role of differential geometry in statistical

theory.

4.2. GLOSSARY

Notation and conventions largely follow Lang (2001). A bijection f : X — Yis called a
diffeomorphism if both f and /! are smooth, e., all partial derivatives exist. We often
say locally, meaning there is a open neighborhood with the desired property for each point.
A set is called a manifold if locally it is diffeomorphic to R™. We will call it for short a m-
manifold. We use E for a Euclidean space of an arbitrary dimension. The diffeomorphism

¢ : Uy — E is called a chart, or local coordinates.

You are familiar with tangent vectors. In differential geometry language, a tangent vec-
tor is an equivalency class. Let v be a vector in E, we identify v with all vectors w such that

there exists another compatible chart is:
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(™) (p)y = w.

Observations x are vectors without coordinates. All tangent vectors at a point x form a
vector space called the tangent space, denoted by 7..X. Disjoint union of spaces gives the
idea of a bundle. The disjoint union of tangent spaces 7(X) for all points on manifold
is called a tangent bundle. We can similarly form a vector bundle over a manifold with
the map Y = : E — Y, by associating a vector space E with each point of ¥ and disjoining
these copies of spaces together. The vector space 71y is often denoted by Ey and it’s called

a fiber at y.

Let 7 : E — Ybe avector bundle and f: X — ¥ a map. Then the vector bundle at ¥ can
be pulled back at X by associating x with the vector space (f*E)y := Eq,) and this induces

the vector bundle f*7 (and the bundle map #*f):

ffm: fE—X.

We call f*E the pullback of E by f. (We can analogously form the pushforward bundles
and these induced maps are denoted by f..) Precomposition with a function provides the

intuition of a pullback.

Because we are dealing various types of statistical objects, it is needed to introduce the
category language—this allows us to describe maps between these objects without having
to construct them formally. A category is any collection of objects with associative com-
position law with an identity element for each object, called morphisms, identified by the

objects [ X, Y]. Sets, groups, rings, manifolds, metric spaces, vector spaces are all example
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of categories (with their corresponding morphisms and additional structures). A function

is a morphism between sets: the converse is not true.

[X,X] is called an endomorphism. [ X, Y] is called an isomorphism if each morphism
has a inverse. An isomorphic endomorphism is an automorphism. An isomorphism in
the category of manifolds is called a homeomorphism. Functors is a meta-category: a
category of categories. A functor gives a map between categories that is also a morphism
between these categories—by definition, it respects their respective identities. Let F be a
functor and p, ¢ be morphisms: if F(pg) = F(p)F(q), the fuctor is said to be covariant; if
F(pg) = F(q)F(p), it is called contravariant.

Derivatives generally exist without calculus. We often say locally, meaning there is an
open neighborhood with the desired property for each point. Let p : E — F be a continuous

map. If locally there exists another map dp : E — F,

p(bo +y) =p(bo) +dpy+4(y)

for a small y. dp is called a derivative and ¢ is tangent to 0. Let p; : E — F; be con-
tinuous maps. Partial derivatives df; by holding all but the i-th component fixed. Functor

morphisms induce natural transformations of the objects.

Let f: X — Ybe a map between vector spaces (or groups in general). The image of a map
is the subspace f{X) c Y, denoted by Im fand the kernel of it is the subspace Ker f c X,

such that for each element x € X, we have f{x) = 0. The quotient ¥/ Imfis the cokernel fo
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the map f. The sequence

is called exact if the image of f'is equal to the kernel of the g. If follows these definitions

that:

0— XL Y ) fis injective;
, Iisexact, if and only

g : .
Y- Z— g 18 surjective.

The short exact sequence

0xLvd 70

is called split if there exists a homomorphism 4 : Z — Y such that the composition gh is
the identity map on Z. For any map f: X — Y, the following exact sequence connects the

kernel with its cokernel:

O—>Kerf—>Xi>Y—> Coker f— 0.

Some terminology to facilitate the discussion of maps between manifolds. Let f: X —
Y be a map between two manifolds and (U, ¢) and (V,), ) be charts at x and f{x) corre-

spondingly. Consider the map on a product space U; x U, (as an open mapping):

fV, U= L/}fqﬁ_l Ui x Uy — Vf(x)

fis an immersion if and only we can find charts that makes /7, , injective; fis an submer-

sion if and only we can find charts that makes f7, ,; surjective. Both idea are intuitive as
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descriptions of isomorphism classes with respect to the larger product space: an immersion
gives an isomorphism from U to a subspace in U; x Us; submersion gives an isomorphism
from U to the whole product space U; x Us. An injective immersion is called a embed-
ding. An important example of an immersion that is not an embedding is a flat surface to

a self-intersecting surface.
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PART 11
EMPIRICAL REMEDIES



Das Bild ist eine Tatsache.”

Abschnitt 2.141,
Tractatus Logico-Philosophicus (1921)

— Ludwig Wittgenstein

2 “A picture is a fact” D.F. Pears and B.F. McGuinness’s translation.
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CHAPTER 5

GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

The preceding part draws attention to certain hardwired theoretical limitations of han-
dling spherical space forms in statistics with classical mathematical tools and calls for
algebraico-topological extensions of existing theories: in Chapter 2, the theoretical limita-
tion is manifested in the unjustified assumption (their Assumption 1) about the efficacy of
the very analytico-geometric approach undertaken and we transcend from the dialectical
contradiction by reframing the problematics with coordinate-free differential-geometric
languages; in Chapter 3, the limitation is recast as the inability of a prima facie empirically
useful statistical procedure to make any refutable statements and we put its mathematical

core on display under the penetrating lens of modern algebraic topology.

These theoretical discussions are in essence a methodological manifesto—but without
offering any concrete statistical procedures, albeit of long-term theoretical interest, they
remain abstract and far removed from the technocratic ethos of the statistical practice to-
day. To alleviate this shortcoming and further ground these lofty discussions in the current
communal research efforts, I now offer a collection of novel interactive graphic tools for
the empirical study of time series, in lieu of a grand synthesis unattainable at the moment.

These tools, in spite of their diverse appearances, are in fact the progeny of the foregoing
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5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

discussions on the geometric interpretations of harmonic decompositions of time series.
Thematically, Chapter 2 lays out the foundation in the form of a generalized curvature
comparison theorem to use spherical space forms in statistics, gua the model space of a
constant curvature. Chapter 3 further demonstrates how these spherical space forms, as
basis for the Fourier transform, are used to reconstruct a time series and cautions against
intuitionists’ attempt to formulate more expedient decompositions. Chapter 2 sets the
stage; Chapter 3 points to a void; and this chapter remedies this theoretical void with a
suite of new graphic tools to help practitioners explore the dynamic harmonic structures

of high-dimensional time series.

5.1. BACKGROUND

Seeing is believing. Yet unlike performing statistical tests, the simple task of seeing is
strictly confined to 2 dimensions, in print and on screen. Even imagination can only
extends it into the third. Adding time, it is the complete enumeration of the space-
time. But the universe, according to the M-theory, has 11 dimensions—we are all low-
dimensional creatures in a high dimensional universe! To visually express high-dimensional
data relations—dynamically in the context of time series—with a plot of by comparison
negligibly low dimensions is part data science, part art of (mis)direction. Thanks to the ever
cheaper computational power, manipulating high-dimensional objects numerically has be-
come a routine task of the trade. Yet without compatible graphical tools to visualize these

high-dimensional objects, statistical research is essentially blind.

We provide a suite of four new graphical tools to help researchers explore the dynamic

structures of high-dimensional time series: (a) the staff plot; (b) the orbit plot; (c) the tunnel
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5.1 Background

plot; and (d) the impulse response plot. Unlike traditional plots designed for print, these
plots presented are a new breed of screen-first graphical applications with rich interactive
features. Utilizing latest programing libraries for high-performance graphic rendering and
runtime manipulation of graphic elements, these new tools, though equally at ease on pa-
per as figures in this chapter demonstrate, are designed to be workhorse data exploration
utilities. The staff and the orbit plots are animated 3-dimensional models: they are de-
signed to address the shortcomings of scatter plots. The tunnel and the impulse response

plots are interactive 2-dimensional plots: they are improved heat maps.
Figure 5.0 outlines the organization of the plots presented in this chapter. Typically,

in papers debuting static plots, authors showcase the versatility of a new plot with diverse

Figure 5.0 Interdependency
of figures in this chapter.

§1 Preliminary

Fig.5.3 Fig 5.2 Fig.5.1
Fig. 5.4 =
[72] : ]
% glg gg -‘,31 §2 Staff Plot §4 Tunnel Plot
g $ Fig.5.8" Fig 5.7 Fig.5.19"
@ ® Tig.5.9% Fig. 5.20*
o - .
= o Fig.5.21*
@ 1 : .
E‘ i Fig.5.22
3 §30rbitPlot ; Robhonee Plot
® TFig.5.13 2 Fig.5.10" Fig.5.23"
Fig. 5.14" Fig.5.11% F}g. 5.24*
Fig. 5.15-18 Fig. 5.12* Fig. 5.25"
Fig.5.26"

Note. Key plots presented in this chapter are marked by an asterisk (*). Illustrative figures
not directly related to the examples are in italic. Figures in this chapter are optimized for
screen or color printing at a resolution of at least 300dpi.
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5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

examples. We however take more of a case study approach with two involved examples, for
two simple reasons. First, we have an array of unconventional tools to introduce. The sheer
number of new plots demand our focus. Second, our goal is to exhibit intricate dynamic
structures hidden in high-dimensional time series. The suite of tools are meant to be used
in tandem. Focusing on the same datasets allows us to tease out these threads from different
angles. Since scatter plots and heat maps are standard statistic tools, readers are invited
to start from Section 5.2 and refer to Section 5.1.2 for background information on the

examples.

5.1.1 PROBLEMS WITH EXISTING P1rOTS

The scatter plot, simple in its construction as the direct spatial representation of a 2- to
3-dimensional dataset, is still the definitive tool to visualize complex patterns of bivari-
ate dependency. Its strength is its faithfulness: viewed as a map, a scatter plot gives an
isomorphic representation to a low-dimensional dataset; one can theoretically reconstruct
the dataset from the plot, given a measurement device of arbitrary precision. We will em-
phasize this conceptual point throughout the chapter and treat it as the guiding design
principle—for each plot, we will discuss at the start whether it represents the data faithfully
and; if certain data have been modded out, what are the justifications for the equivalence
relation implicitly declared. This might seem at first a pedantic exercise but, as the chi-plot

example demonstrates, essential to establish plotting as a scientific discipline.

Faithfulness comes at the cost of clutter, which is the obvious shortcoming of scatter
plots. Since all data are transcribed literally as points in a Euclidean space, the scatter plot

is a low-dimensional graphic tool and researchers would have to examine scatter plots for all
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variable pairs in order to piece together the correlation structures ! of a high-dimensional
dataset. A natural solution is to shrink its size and present many scatter plots in a matrix
(Hartigan, 1975; Cleveland and McGill, 1984). R alone has numerous implementations
of this basic idea, some with additional complications: pairs (R-Core), lattice:splom
(Sarkar, 2008, Trellis Graphics for R), DescTools:PlotMatrix (et al., 2018, Tools for De-
scriptive Statistics), and Deducer:ggcorplot (Fellows, 2012, A Data Analysis GUI for R).
However, these plot matrices only confound the cluttering problem and become impossible

to read for high-dimensional data (Friendly, 2012).

Plots like the chi-plot? (Fisher and Switzer, 2001, based on the chi-squared statistics)
and the K-plot (Genest and Boies, 2003, based on Kendall’s tau) are essentially transformed
scatter plots and, as we argued above, cannot beat the scatter plot in its faithfulness. Take
the chi-plot for example. It is said to reveal far richer bivariate dependence relations to

formal statistical tests such as Wilbert C. M. Kallenberg and Rafajlowicz (1997); Kallen-

1 We use the term “correlation” for Pearson’s correlation coeflicient throughout the chap-
ter. When we say the correlations of a multivariate time series, we broadly include auto-
correlations and cross-correlations of all pairs of variables up to a given lag, unless stated
otherwise.

2 Consider a n-sample of 2-dimensional observations {(x;, YL, For any given pair (x;,;),
we can define the following empirical c.d.f.s:

=R F=F—1/2
Gi= =gy <y and G —Gio1/2.
1 ] s
Hz' = E#K-xlay]) X< Xiy Yy <y1'}- L
The chi-plot is the graph of (x;, A;), where
H: - F.G:
X; = S and A, = 4sgn(F1G?) max(|F? %, |G2)?). (1)

\/Fi(l - Fz’)Gi<1 - Gz’)
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berg and Ledwina (1999), suggesting a deeper link between the chi-plot and the copula
functions. The “richness of the graphs” is however the consequence of a poor choice of the
distance function A. The distinct lobed-structures in many chi-plots,®> which are assumed
in the literature to suggest mixing of different distributional families, are in fact largely
spurious features of the jumping points in the signed distance function A and simply dis-
appear if we choose a more conventional smooth distance function.* Fisher and Switzer
(1985, 2001) does concede there is no good reason to choose any particular functional
form of the distance function A and offers several alternative distance functions. But in
Fisher and Switzer (1985, 2001) and related literature, the distance function in Equation

(1) is almost used exclusively.

The heat map takes a different approach. It does away with geometric representations
of variables but instead encodes the value of research interest, usually correlations, with
colored cells. This new approach, thanks to the invention of high-resolution color display
monitors, allows researchers to effectively visualize the correlations of a high dimensional
dataset. Yet in practice the heat map is more of an impressionist painting than a pre-

cision instrument: it leaves researchers with a hazy impression of the overall correlation

3 Figure 5.1(a) reproduces the example of Fisher and Switzer (2001). The original dataset
(not publicly available) come from Griffin et al. (1999), which analyzes the element com-
positions of 13,317 individual grains of mantle-derived peridotic garnet.

4 Figures 5.1(b)—(d) illustrate the point. Panel (5) gives the scatter plot of a randomly gener-
ated normal sample with a weak positive correlation. To examine how the chi-plot remaps
each point, we introduce a color gradient to encode each point’s 2-dimensional position.
Panel (¢) illustrates Fisher and Switzer’s A; (Equation 1) and panel (d) gives the correspond-
ing chi-plot, with the signature arch. Note how originally adjacent points are redistributed
according to the idiosyncratic lobed-structures of the chosen distance function. Panel (d’)
demonstrates these artificial features disappear with a more mild choice of the distance
function, e.g., the linear distance function in (¢’).
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distribution but makes identifying each cell by variables difficult. Clustering can help. But
it doesn’t solve either the precision or the navigational problems, while creating its own
problems in the process: for example, clustering depends on the method of seriation and is
computationally expensive (McKenna et al., 2016). Wilkinson and Friendly (2012) provides
a historical review of the heat map. In the context of high-dimensional time series, we are
often interested in studying how correlations change along lags. Heat maps for different
lags like Figure 5.2 can readily show the overall decaying of correlations as we gradually
increase the number of lags. However, they offer little help to answering simple observa-
tional questions like these: a) how fast does the correlation of a given pair decay along lags?

(b) are there any outliers? or (c) what variables do the cells of a certain color represent?

5.1.2 PERSISTENCE OF TiDAI-LOCKED PERIODS

We will use the suite of new tools to visualize the intricate dynamic structures of two well-
studied datasets. The first example is the monthly unemployment rates (seasonally ad-
justed) of 50 U.S. States and the District of Columbia (D.C.) from January 1976 to May
2018 released by the U.S. Bureau of Labor Statistics, as reported by the Federal Reserve
Bank of St. Louis. The second example is the 512 constituent stocks of the Standard and
Poor’s 500 (the S&P) index from February 8, 2013 to February 7, 2018, using the Daily
Stock File database from the Center for Research in Security Prices (CRSP) at The Uni-
versity of Chicago Booth School of Business. Figure 5.3 gives the complete list of these
stocks and their Standard Industrial Classification (SIC) numbers: manufacturing (173
stocks, 33.8% of the sample); finance, insurance and real estate (96, 18.8%); services and

public administration (74, 14.5%); transportation, communications, electric, gas and san-
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itary service (68, 13.3%); wholesale and retail trade (58, 11.3%); mining and construction

(31, 6.1%); and the rest do not have an official SIC code assigned (12, 2.3%).

It’s not common practice to talk about phases of time series outside of the context of
macroeconomics. Before arguing formally in Section 5.2 that phases are simply correla-
tions on a sphere, see Equations (2) and (3), we first provide some elementary empirical
evidences on the harmonic aspects of stock prices. This is of course not to present a new
theory about stock returns, which is beyond the scope of this modest exposition on purely
descriptive visualization tools. In fact, the very premise of studying stock prices, rather
than their returns, is very much against the established conventions in the field of finan-
cial statistics, for sound financial and statistical reasons. However, since we don’t engage
with financial theories here and price levels in general have profiles more of the desired
smooth wave-like forms (details see Section 5.3.1), let’s treat them naively as anonymized
time series stripped of farreaching financial implications. Curious readers are invited to

redo these exercises with stock returns with the open-source tools provided (Section 5.5).

We first rescale all prices from 0 and 1, since we are only interested in the shapes of
these line plots. Figure 5.4(a) shows these prices are very weakly correlated but with non-
trivial dynamics as evidenced by the composite plot in Panel (b). We see darkened areas
in the bottom left corner (2003-2014), the upper right corner (mid 2017-2018), as well
as a handful of darkened strands in the middle (e.g., 2015): this suggests even the overall
correlations are very weak, there are prolonged periods when a large subset of the time
series move in synchrony. In particular, we notice two defined half circle patterns in the

bottom left corner.
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To further analyze the phasal dynamics, we wrap the time series on a unit circle and
track their phases, so that local maxima always give phase-0 and local minima always give
phase- (details see Section 5.3.1). Figure 5.5(a) gives the phasal probability density across
time. Panel (b) gives the corresponding contours. We observe large elliptical regions in
magenta, indicating probability concentrations in some phases over time. Indeed, we see
the three phasal density peaks at 7 at the start of the time series, corresponding to the
half circles pattern described. To better visualize these phasal dynamics, we introduce a
density-contour hybrid plot in Panel (¢), where only high density regions are highlighted.
As we expect, there are periods when these time series are out of phase and fluctuate in
their own cycles: e.g., from 2017 to 2018, even though we observe dark bands of price levels
in Figure 5.4(b), the phases of these series are evenly distributed; this is reflected in Figure
5.5(c) as flat probability density curves from 2017 to 2018. However, there are also periods
when these series move together and certain phases have elevated probability densities in
(¢): e.g.,in late 2013 (around Period 150), we observe the probability density peak gradually
shifts from phase-7 to phase-0; in early 2014 (around Period 210), the peak moves from
3m/2 to ; and from mid 2015 to early 2016 (Periods 600-800), there are significant and

irregular phasal density shifts. What is happening? What components are moving in sync?

Figure 5.6(b) displays the composite phasal plot. Comparing to the composite level plot
in Figure 5.4(b), we observe distinct patterns of phasal integration: when phases are out
of sync, the composite phasal plot displays a blurry image of curves (e.g., 2017-2018);
when they come in sync, however, sharp sinusoid shapes emerge (e.g., late 2013 and late
2015). Often, phases do not overlap but move in sync: we call the period when time series
share the same harmonic frequency, their tidal-locked period. The intuition will become

clear in Section 5.2 when we introduce the orbit plot. Figure 5.6(a) counts the length
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of each tidal-locked period for each pair of the first 40 time series. Since the correlation
matrix is symmetric, we stack the entries of its upper triangle row by row, differentiated by
background color blocks. We visualize the lengths of tidal-locked periods by colorizing the
horizontal stripes with the yellow-red gradient. Note tidally locked periods widely exist for

all pairs, though of varying lengths and frequencies.
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Figure 5.1 Chi-plots for
bivariate dependence
screening.

Note. (a) Ranked scatter plots and corresponding chi-plots, replicated from Fisher and
Switzer (2001); (b) sample of randomly generated normal scatter plot; (¢) Fisher and
Switzer’s A; (Equation 1) and (d) corresponding chi-plot; as well as (¢’) linear A; = H; and
(d’) corresponding chi-plot.
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Figure 5.2 Heat map of
cross-correlation of differ-
ent lags.

Color Key

Color Key

(a)| (b)
(© | (d)

Note. Monthly unemployment rates (seasonally adjusted) of 50 states from January 1976
to May 2018, U.S. Bureau of Labor Statistics, retrieved from Federal Reserve Bank of St.
Louis. States sorted by postal codes. (a) Lag 0; (b) Lag 4; (c) Lag 8; and (d) Lag 12.
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Figure 5.3 List of all
stocks tracked.
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Note. S&P 500 Index stocks from February 8, 2013 to February 7, 2018, CRSP.
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Figure 5.4 Cross correla-
tions of S&P 500 stocks.
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(b)
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Note. Daily closing price of S&P 500 Index stocks from February 8, 2013 to February 7,
2018, Daily Stock File, Center for Research in Security Prices (CRSP), The University of
Chicago Booth School of Business. (@) Heat map of cross correlations; and (b) composite

plot of closing prices of all stocks tracked, rescale from 0O to 1.
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5.1 Background

Figure 5.5 Phasal kernel
density across time.
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Figure 5.6 Prevalence and

persistence of tidal locking 123.
in stock prices. Pesk Peak =
\/\_/ — Q —> 3 || —>
Trough tl
1 .. Trough [t _—
Wrap time series Record phases Highlight tidal
on unit circle of time series locked periods

Note. (a) Tidally locked periods, all 820 combinatorial pairs of first 40 stocks shown; and
(b) composite phasal plot of stock prices, cf., composite price level plot in Figure 5.4(b).

Let pl, p? be the phases of two time series. Define their phase difference at 7 to be d; =
pl—p?. Period ¢ is declared to be a tidal-locked period if A; = |d;—d;-1| < 5°, where we take
into consideration the spherical geometry so that A; € [0,27). Let I , = {t, 141, ..., t+g-1}
be a consecutive segment of tidally locked periods, so that p! and p? are not tidally locked
at t—1and t + g. We call ¢ = #1; 4 the length of the tidal-locked periods. To avoid trivially
tidal-locked periods, we are only interested in I 4, that is, periods tidally locked for at least
20 consecutive trading days.
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5.2 Staff Plot
5.2. STAFF PLOT

We first introduce the dynamic staff plot to visualize lagged correlations of high-dimensional
time series. The link between the correlation and spherical geometry might not be immedi-
ately obvious—the former, after all, is used to measure linear dependence and often fails to
detect the presence of nonlinear causal relationships which include, inter alia, spherical de-
pendence. Yet there exists a canonical isomorphism between the correlation and the angle
of two variables. The staft plot exploits the property. To exhibit this simple isomorphism,
consider two univariables of length 7, x = (x1, X2, ..., x7) andy = (y1, ¥o, ..., yr). Their

correlation (more accurately, their lag-O correlation)

(x.y) = Sl -2) 2l 0e-y)
\/2;1(3& —9_5)2\/24?:1 v —¥)?

can be written as

Y

rx,y) = . = cos(x®, y*), (2)
o) = e e Y
where the 0-centered observations x* = x-x1y = (x; - X, X2 - X, ..., x7—X) and y* =
y-ylr = 01-Y, Y2-Y, ..., Yr —y) are the univariables with their respective means

subtracted. Equation (2) therefore gives the isomorphism between the correlation of the
two univariables r(x, y) and their centered angle (x*, y*), using the principal value of arc-

cosine. If we further define the standardization procedure as

x° =x*/|lx*ll and =y,
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their correlation 7(x,y) can be conveniently written as

r(xay) = x° _yo = COS(‘XO,yo)'

Given an n-component time series Xi., X2, ..., X, of equal length, its components
after standardization, xj, x5, ..., x5, can be conveniently represented as points on an
n-sphere, §". Consequently, the pair-wise correlations of these components can be seen
under the isomorphism as their angles on the big circles, which for brevity we will call their
phasal differences.’ If we further project all these points onto any one of the big circles
formed by connecting two noncollinear points on a hypersphere, x and y, and without loss
of generality, move x to the north pole, the correlations of all components with x can be
plainly represented by the latitudes of these projected points.® This simple geometric fact
is the motivation for correlation plots based on spherical projection, e.g., the s-CorrPlots

(McKenna et al., 2016). We will briefly restate their construction procedures in the follow-

ing section but readers can find more detailed explanations in McKenna et al. (2016).

Lagged correlations, as correlations of shifted variables, inherit the same spherical ge-

ometry. The lag-¢ correlation between x and y,

> This geometry fact gives the intuitions behind the unconventional notations: the centered
observations x* and y* are interior points of a disk of some radius and their normalized
counterparts x° and x° lie on the boundary of the unit disk, ze., on a unit circle, S*.

6 Strictly speaking, we should use the geographic terms, such as the poles, the equator,
and the latitude circles, for a 3-dimensional sphere, $2, only. However, the terms are clear
when they are used to describe the projection on the xy-circle, since one can extend into
the additional (and irrelevant) dimension by choosing an arbitrary third univariable, z,
provided it’s collinear with neither x nor y.
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Dies1 (=3 BL106 - )

\/Zz o1 (0 = \/Zt—t’

re(x,y) =

can be written as

rf(‘x’y) = jr[ '.yi[ = COS(-xjrg)yi()) (3)

if we use x,, to denote the ¢-truncated x (i.e., a univariable with its first £ observations
removed) and y_, to denote the ¢-lagged y (i.e., a univariable with its last ¢ observations

removed). Both shifted observations x., and y_, now have length 7' ¢.”

5.2.1 CONSTRUCTION

The staff plot is straightforward to construct, at least conceptually (Figure 5.7)—it is
simply the s-CorrPlots (McKenna et al., 2016) of multiple lags stacked together in a 3-

dimensional space. The added complication does require a brand new implementation

7 We have of course overloaded the notations for x and y for convenience and it’s clear from
the context that X = 75 Y[, | =% candy= 5 30, =V,

Figure 5.7 Construction
procedure of staff plots.

-1

Xy
— @ —

Obtain correlation hypersphere Project points from hypersphere onto Stack correlation planes and connect
for specific lag reference correlation plane points from same time series

(a) (b) (c)

/+1

~—
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and lead to engineering complications with the graphic tools at the moment. However,
this is a minor concern here: I will address related computational issues in the technical

note at the end. The staft plot can be constructed as follows.

(a) We have just demonstrated in the previous section that standardized components of a
multivariate time series (of a given lag ¢) can be represented as points on a hypersphere.

For clarity, we now suppress the subscript for the lag.

(b) For any two noncollinear variables x and y, the Gram-Schmidt procedure gives two

orthonormal basis:
X0 = (X7 Y)Y
[l = (xx° - °)y° |

x° and y] =

Simple projection of any component z° onto the orthonormal basis x° and y gives the
coordinates of z° on the unit xy-disk. More specifically, let

Py =%, y1]"
be the 2 x (T'-¢) projection matrix. The desired coordinates of z° (or more strictly, z°,,

if we wish to express the fixed lag explicitly) on the reference xy-disk are simply P,z°.

This therefore projects all points on a hypersphere onto a unit correlation disk.

We name the component x the pivot component: all points produced on the graph
here and in the subsequent procedures represent either the lagged autocorrelations
of this component or the lagged cross-correlations of this component with the other
components. For easy identification, we shall always place the pivot component at the

north pole. We call the component y the secondary component.
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5.2 Staff Plot

(c) We draw latitude guidelines at the equator and various significant levels for the cor-
relations with the pivot component according to Equation (2): 0 = 0°; +0.4 =
+53.13°% +£.6 = +66.42°; +.8 = +78.46°; and the perfectly correlated points (+1) are

located at the antipodal polar points (£90°).

(d) Repeat the previous steps for all lags of interest and stack these correlation disks in-

dexed by the lag numbers sequentially with lag-0 correlation disk at the top.

(¢) Finally we draw a line stringing together points from the same component and for easier

identification, color adjacent components differently.

5.2.2 EXAMPLES

Figure 5.8 provides a tutorial to the staff plot. Comparing to the heat maps in Figure
5.2, the staff plot gives a far more intelligible visualization to lagged correlations of high-
dimensional time series. The example plot includes the lagged correlation of Towa with
all 50 states, including itself. To avoid cluttering, only correlations of lags- 0, 1, 3, 6, 12,
18, 24 are displayed. Lagged correlations from the same pairs are connected with line seg-
ments, giving the appearance of strands of beads. We have also colored correlation strands

differently to distinguish them from one another.

Here is a list of all graphic elements and their statistical interpretations. Readers should
bear in mind that the staff plot in our implementation is a fully interactive 3-dimensional
model: users have the option to zoom and rotate their viewing perspectives and highlight

a specific correlation strand of interest.
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(1) Plot name. The variable name of the pivot component is prominently displayed at the
top of the staff plot. It clearly indicates to users that this staff plot is about the lagged
correlations of Towa. Users can alternatively identify the pivot component by locating
the correlation strand with the first node at the north pole, since the lag-0 correlation

of any component with itself is by definition 1.

Figure 5.8 Staff plot: toy
example. lowa

H 0.4

Note. Monthly unemployment rates (seasonally adjusted) of 50 states from January 1976
to May 2018, U.S. Bureau of Labor Statistics, retrieved from Federal Reserve Bank of St.
Louis. For clarity, only correlations of lags 0, 1, 3, 6, 12, 18, 24 with Iowa are plotted.
Note the staff plot is a 3-dimensional model: users have option to change their viewing
perspectives and highlight a chosen correlation strand. Details see Section 5.2.2.
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5.2 Staff Plot

(2) Layer. The staff plot contains several identical layers of guidelines, with each layer con-
sisting of a circle and several horizontal lines. Guideline layers are colored with a subtle
blue-to-black color gradient, representing different lags from lag-0 to the last lag. Since
correlations for lags 0, 1, 3, 6, 12, 18, 24 are provided, the staff plot displayed contains

7 layers. Each layer is a s-CorrPlot for the correlations of that lag.

(3) Guideline. Horizontal guidelines indicate different significant levels for correlations
with the pivot component. From the poles to the equator, the staff plot includes guide-
lines for +0.8, £0.6, and +0.4 correlations, with the northern hemisphere representing

positive correlations. These guidelines resemble music staves, the plot’s namesake.

(4) Strand. Strands of beads of different colors are scattered across the plot. Each strand
represents the lagged correlations between a pair of components: at least one of these
components is always the pivot component.® For comparison, in Figure 5.19, it is
represent by a column of colored cells. Note again, the strand for self-correlations, ze.,
the lagged correlation of the pivot component with itself, always starts at the north

pole.

(5) Bead. Each bead represents the correlation of a specific lag for a given pair of variables.
Readers can tell which variable pair each bead represents from the color and the mouse-
over tooltip. Beads on each strand are equally spaced vertically, since they represent
different lags and are therefore embedded in different layers, by (2). The first bead of

each strand, representing the lag-0 correlation, is larger than the rest.

8 Mouse hover each strand gives the name of the other component.
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Readers can screen bivariate dependence of a high-dimensional time series by notic-
ing the shape of each strand and the locations of the beads on the strand. Figure 5.8 in

addition contains some examples of possible shapes and their statistical interpretations.

(1) Strand location. Strands starting from higher latitudes have higher correlations with
the pivot component. The guidelines provide a convenient visual tool to sift out sig-
nificantly correlated pairs. In the example, we can quickly tell that Kentucky (Ky) and
Mississippi (MS) have lag-0 correlations with Iowa (p, > .9); Louisiana (LA) has a mod-
erate lag-0 correlation with Iowa (p, ~ .7); and Connecticut (CT), Massachusetts (MA),
and Hawaii (HI) all have weak lag-0 correlations with Iowa (o, < .4). Similarly, by inter-
actively exploring the 3-dimensional model, we can read the correlations of later lags

off the locations of the smaller beads.

(2) Strand length. The length of each strand illustrates how fast the correlations between
the pivot component and that variable decay along the lags chosen. We can tell from
its long and straight strand that Massachusetts (MA) has not only a relatively weak lag-0
correlation with Towa but also the fastest correlation decay along the lags: its lag-24 cor-
relation with Iowa is close to 0. The Louisiana (LA) correlations with Iowa, however, have
a very different profile; its short and bended strand shows their correlations actually

increase along early lags (lags 1, 3, 6) before eventually decaying slowly (p, = pyy = .7).

(3) Outlier. Outliers quickly emerge from the plot. The strand for Hawaii (HI) correlations
with Towa stands apart from the rest. Not only can we quickly identify the outliers
by correlation levels, we can also visually identify variables with irregular correlation
decaying patterns by noticing the unusual shapes of the strands. Louisiana (LA) is a

such example.
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Figure 5.9 Staff plots for
correlation screening.
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Note. Figure 5.9 continued.
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5.2 Staff Plot

The strength of the staff plot is its compactness. Figure 5.9 gives the complete guide
to the lagged correlation dynamics of the unemployment rates of 50 U.S. states. Readers
can follow the tutorial of Figure 5.8 and glean a wealth of information (about bivariate
dependence, correlation decay patterns, as well as clusters and outliers) by simply studying

these intuitive plots.
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Note. Figure 5.9 continued.
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5.3. ORBIT PLOT

In the previous section on the staff plot, we have demonstrated and made use of the canon-

ical isomorphism between the correlation of a pair of univariables and their phasal differ-

Figure 5.10 Dynamic or-

bit plot. Gl . Exognansion

UR
‘ il 4 /- / 0.75m_— l

Trough

Time

- )
Calif. Md. % o —

1717 1.75
//f 9} . 114
Nev, D.C.N.Y. / Fed UR). 511 B } -
[ﬂ ° ) T @ = 2
0.75n_ 0 9Q [ ‘ 1.5n
[
ln\
\‘

1.25n i 5 - } L (@) (b)

Note. (a) Business cycles are of pivotal importance in macroeconomics. (b) The orbit plot
proposed illustrates nuanced dynamic harmonic relations of high-dimensional time series.

(¢) Additional complications are added to facilitate macroeconomic analyses, see Section
5.3.1 for details.
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5.3 Orbit Plot

ence. As a consequence, we can further deduce from the fact that lagged correlations can
alternatively be faithfully represented by phasal changes of time series. This awareness of
changes in phasal differences is of critical importance in macroeconomics, in particular the
study of business cycles, as Figure 5.10(a) illustrates, where phasal changes of economic
indicators can often lead to impactful changes of economic policies and investment deci-
sions. Yet in spite of their intuitive affinity to harmonic analyses, practitioners nevertheless
rely on observing time series line plots, often component by component, to detect peaks
and troughs, expansions and contractions, and use these single-dimensional fragments to
construct vague mental depictions of these high-dimensional time series, sharpened only

by trial and error experiences.

We take the extra step and make explicit the phasal changes of time series in the new or-
bit plot. Like the companion staff plot just introduced, the orbit plot materializes a simple
motivational idea: we want to make apparent the dynamic phasal transitions of a high-
dimensional time series. Intuitively, the orbit plot can be viewed as the HHT in the limit,
where the time series itself is interpreted as an empirical mode. Rather than introspec-
tively decomposing a time series into dubious intrinsic modes (see theoretical discussions
in Chapter 3), we turn outward and depict all such empirical modes, now phenomenolog-

ically observed, on a single dynamic plot.

Some words about terminology before we start. Since terms used to describe macroeco-
nomic time series features—such as, expansions and contractions, peaks and troughs,—
have become common parlance, we use them without further explanations. Readers can
turn to standard textbooks for reference, e.g., Abel et al. (2016) or Mankiw (2015). To avoid

confusions, however, we use these macroeconomic descriptors exclusively to characterize
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the underlying business cycles. Since indicators such as the unemployment rates are coun-

tercyclical, these terms don’t describe their time series features.

5.3.1 CONSTRUCTION

The construction of the orbit plot is analogous to the HHT (see Chapter 3). Our goal is to
infer the phases of a time series from its levels observed. Since the concept of phases can
only be suitably applied to time series with smooth sinusoid-like shapes, before we start the
construction procedures, some regularization procedures might be needed to denoise the
time series, depending on the scientific content and the measurement method of the time
series: in general, time series rapidly transitioning between local extrema on a line plot
are candidates for additional regularization procedures. Some simple regularization ideas
include: averaging multiple measurements; smooth curve fitting; and changing observation
frequencies. Since regularization is not the focus of the paper, we henceforth assume the

time series under investigation have been denoised and have well-behaved wave-like forms.

Like the HHT, the construction procedures for the orbit plot are natural but somewhat
cumbersome to describe—Figure 5.10 should give readers a straightforward depiction of
the motivational ideas. Take any component x = x;. € RT = (x1,x0,...,x7) of an n-
dimensional time series xj., X2, ...,X,, cach component with length 7. Suffice to give
the map A : R — S7°2, which in general is not an isomorphism. We start with a naive
piecewise linear mapping: this corresponds to the piecewise uniform angular motion in the
orbit plot; that is, all components orbit in the same direction (say counterclockwise) with
step-function velocities jumping only at phases 0 and #. Using the notations introduced

in Section 3.2.1, let {x} be the set of local maxima of x and {x}_, its local minima. Since
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5.3 Orbit Plot

we use arccos as the isomorphic map between the two topologies in the staff plot, declare
h:{x}y — 0and A : {x}- — 7, that is, points in {x} are mapped to 0—strictly speaking,
#{x}4 copies of 0—under 4 and {x}_, 7. We now only need to linearly interpolate the images

of x for points other than 0 and 7: the procedure is as follows.

It is clear all other points {x;}/{x}. lie either between a local maximum (on its left) and a
local minimum (on its right) or vice versa. Note the end points of the line plot at 0 and 7 are
by construction extrema: since this is an artificial fact by construction and does not yield
meaningful physical interpretation (again like what they are in the HHT), we in practice
drop a couple of cycles at the beginning and the end of a time series to effectively give
the dynamic orbit plot time to boot up and wind down. Let x; and x;, j > 7 + 1) be an
ordered pair of adjacent local maximum (ze., /x; = 0) and local minimum (Ax; = =), we
then have Ax, = %w, i < p <j. Similarly, if we instead have /x; = 7 and Ax; = 0, define
hxy = m + %77, [ < p < J, where we use the spherical topology property 2nm = 0. This
completes the map /4: readers can verify all points of x have been assigned an image on a

circle.

5.3.2 EXAMPLES

Figures 5.11 and 5.12 continue with the foregoing example of unemployment rates. The
center sphere in red is the federal civilian unemployment rate (UR) and the spheres or-
biting it are the 50 state unemployment rates. We draw additional guidelines between the
federal sphere and state spheres to help readers visualize how strong the tidal locks be-
tween these pairs are—viz., how many consecutive months each pair has been in phase

locked positions. Instead of summarizing intricate dynamics with correlations as we do in

91



5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

the staff plot, the orbit plot provides animated representations of how these time series
interact month by month. It provides insights into the following questions that existing

graphic tools and the staft plot cannot answer, questions nevertheless of great importance

Figure 5.11 Orbit plots
and U.S. business cycles.

FRED :# Ccivilian Unemployment Rate
11

10

3 T T T T T I
1980 1985 190 1995 2000 2005 2010 2015
1) @2 (3)4) (5) 6) (7) 8)
0.5n 0.5n 0.5¢ 0.5n
T 098 e T Jan 190w - Fab, 1991
. R N A 4
w\ Ve , on 1o T A/
, ,- f
Lc 4
1.25n ‘i 25n 1.75 251 1754 251 . 1.75
ton o e o
(1) wigee(2) (3) 4)
B A T A :&a"dan,zmm N Come New2om P Jun, 2009 ”“@A'L@s
4 //
26n 751 25n h 51 25n o Jie \ o 1.75n 251 L4 ," 751
i e R
(5) 6) (7) (8)

Note. U.S. Bureau of Labor Statistics, Civilian Unemployment Rate [UNRATE], retrieved
from FRED, Federal Reserve Bank of St. Louis; fred.stlouisfed.org/series/UNRATE,
June 18, 2018. Shaded areas indicate U.S. recessions. Details see Figure 5.12.
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to macroeconomic policy makers. Since economic recessions are a well-researched subject,

we use established facts about recessions as a benchmark to validate the orbit plot: we will

demonstrate how key features of recessions are effectively depicted in the plot before mov-

ing on to a more stylized example.

(1)

(2)

3)

Expansion and contraction. All spheres in the upper cylinder represent economies in ex-
pansion (decreasing unemployment) and the rest in the lower cylinder are economies in
contraction. The plot shows how long and in what sequential orders economies tran-
sition between the two states. The 2009 recession stands out from the rest in that
all economies are clustered in the fourth quadrant in Figure 5.12: it suggests that
economies have become more integrated since 1980 and the 2009 recession is more
widespread than the rest. This is also reflected in the unusually long periods of tidal-
locked rotations: we observe at the end of the recession, economies have been tidally
locked for 5 and half years, comparing to 3 years in 1980, 2 years in 1982, 2 years in
1992, and 1 year in 2001.

Procyclical and anticyclical. The plot gives a vivid recount of how each economy behaves
in each business cycle by noticing its relative phase with regard to other states. Take
the 2009 recession for example, we see industrial states like Indiana (IN) move into the
recession before the overall U.S. economy but states with heavy financial sectors like
Connecticut (CT) drag in recovery, confirming the fact the 2009 recession is the result

of the financial crisis of 2007-2008.

Classtfication of recessions. Classification of a general economic recession is a difficult
question since each state behaves differently: The Federal Reserve frequently revises its

official definitions of recessional periods (shown in gray area in Figures 5.11). There
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is a natural definition of recession from the orbit plot: if and only if we see economies
are strongly tidal locks in the lower quadrants, the overall U.S. economy is in a reces-
sion. There is a one-to-one mapping between the occurrences of these patterns and the
recessions officially declared. In fact, Figure 5.12 shows the official declaration of the
ending of a recession precisely coincides with that prescribed by the orbit plot: note
they do not always coincide with the peaks of federal unemployment rate. The only ex-
ception is the 1991 recession: the Fed declares the recession ends in February 1991 but
accordingly to the orbit plot, most tidally locked economies do not begin the recovery
process until August 1992, a year and a half later. This might be political compromise:
the reunification of Germany in October, 1990, the end of Gulf War in February 1991,
and events leading up to the official dissolution of the Soviet Union in December 1991,

all make it the perfect timing for recovery.

Figures 5.13 to 5.16 provide an in-depth case study on how to use the orbit plot to
examine the dynamic relations of a given component of a high-dimensional time series
in situ, that is, with respect to other components of the time series. Taking on the role
of a stock analyst of, say Apple Inc. (AAPL), we want to understand precisely how AAPL
fluctuates with respect to other stocks in the market, similar to the exercise we did for
the unemployment rates of 50 states. Standard portfolio theory shows stock returns are
correlated with the return of the market portfolio. Figure 5.13(5) documents the intricate
dynamic relations. We have introduced the phenomenon of tidal locking and exhibited its
prevalence in S&P 500 stocks in Section 5.1.2. The plot overlays the tidally locked segments
of all 511 stocks with AAPL: there are periods when a large subset of stocks are persistently
tidally locked with AAPL (e.g., around Period 800, in April 2016) and there are periods when

almost none does (e.g., around Period 300, in March 2014). Panel (¢) shows this cannot be
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simply explained away with market volatility. We plot the market volatility levels in gray so
that the gray region is wider when the market volatility is high; we similarly plot the tidal
lock strength in red so that the red region is wider when the time series are weakly locked.
We would expect to observe weak tidal locks when the market volatility is high and vice
versa but this is seldom the case. Our task is then to explore their precise relations with
the orbit plot. Since the orbit plot is dynamic, to facilitate further discussions, let’s take
snapshot plots (see Figure 5.14) from four periods indicated in Figure 5.13: (1) Period
139: August 26, 2013; (2) Period 285: March 27, 2014; (3) Period 799: April 11, 2016;
and (4) Period 1201: November 10, 2017. These particular periods are chosen because at
these four representative time slices, the animated orbit plot exhibits four distinct visual

patterns, which cannot be explained through fundamental analyses or event studies.

Since the orbit plot is a 3-dimensional model, without accessing the interactive tools
needed for exploring 3-dimensional models, these static snapshots are difficult to read
in print. To alleviate the problem, Figure 5.15 lists out the top tidally locked stocks for
each of the snapshots, except for Period (2) when all stocks are weakly tidally locked with
AAPL. For comparison, Figure 5.16 lists out the overall top tidally locked stocks. To further
provide the context of these plot, Figure 5.17 provides the top news feed for AAPL from
the Bloomberg Terminal on or shortly before these dates and Figure 5.18 provides the

corresponding top news on the overall economy.

(1) Period 139: August 26, 2013. After a period of jittery sideway movements, AAPL climbs
to phase-0 but most of its top tidally locked stocks are in the second and the third quad-
rants, counting clockwise. Apple is testing components for iPhone 5S due to release in

a month, a small annual refresh to its predecessor. Ballmer is leaving Microsoft in a
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year. U.S. economy continues with the slow recovery from the financial crisis 5 years

ago.

(2) Period 285: March 27, 2014. Apple sideway movement continues. Apple fights with U.S.
over encryption and iPhnone sales lose momentum as the market pushes for low-cost
smart phones. U.S. economy expands more than expect. AAPL phasally detaches from

other stocks.

(3) Period 799: April 11, 2016. Microsoft Office for iPad is released and Apple increases
battery orders. Obama presides over steady recovery. AAPL rotates in sync with its top

tidally locked stocks.

(4) Period 1201: November 10, 2017. Apple iPhone X was released a week earlier: market
reception is warm. US economy rebounds under Trump. AAPL becomes tidally locked

with a wide array of stocks.

Analogous to the previous example on unemployment rates, analysts can use the or-
bit plot to perform macroeconomic studies on AAPL. The orbit plot, in essence, offers a
first graphical tool to allow analysts to study the business cycles of AAPL vis-a-vis those of
the market. This consists of various aspects of macroeconomic analysis, as we carried out
before in the previous example. For example, a typical stock analysis question asks how
much of AAPL’s gain during a certain period is due to the overall bullish market. Without
a scientific tool to study the phenomenon of tidal locking, the answer is a judgment call,
resting on an analyst’s ability sensing the market sentiments from various fundamental
indicators, technical signals, and words on the street. We can analogously propose the nat-
ural criterion for market growth—this plays an important role later in the discussion of

the beta of a stock—if and only if we observe a cluster of tidally locked stocks in the fourth
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quadrant. This is exactly what we observe in Snapshot (3). By highlighting certain stocks
for comparison (what practitioners call “comps”), analysts can further customize the orbit
plot and use it to answer comparative questions like how AAPL performs with respect to its

comps.

This in effect gives a dynamic representation of the beta of AAPL. In finance, the expected
stock return (Er) in excess of the risk-free rate of interest I the “risk premium,” is postulated

to be

Er—ry= B(Ery, - rf),

where Er,, is the expected market return. This is widely celebrated as the capital asset pric-
ing model (CAPM).? In the U.S., published betas typically use a stock market index such
as the S&P500 as the market portfolio and are reported as objective measurements along
with fundamental variables like Open Price, 52-Week Range, Earnings Per Share (EPS), and
others.!? The regression coeflicient, B, reflects the bivariate dependence of the stock return
and the market return, is often taken as the risk measure and called the reward-to-risk ra-
tio. Comparing to a single number reported, the orbit plot gives animated representations

of how B changes overtime. In Snapshot (3), we see AAPL is of the same phase with tightly

? You can control for more factors, ¢.g., market capitalization (SMB, small minus big),
book-to-market ratio (HML, high minus low), profitability (RMW, robust minus week), in-
vestment (CMA, conservative minus aggressive), and momentum (MOM), in the regression
but most reported betas do not. In any case, it’s tangent to the point that factor loading
are dynamic.

10 These calculated betas vary widely from venue and venue: For example, the beta for AAPL
is reported to be 1.01 (Marketwatch), 1.02 (Nasdaq), 1.097 (Investopedia), 1.14 (Yahoo
Finance), 1.15 (Reuters), 1.15 (CNBC), FT (1.1521), and 1.23 (MSN), on July 17, 2018.
Since the convention for calculating beta is not clear, we refrain from further discussions
on the effects of choosing different frequencies and lengths for the returns as well as the
distinction between equity and asset betas.
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tidally locked stocks: this is evidence for an increased 8. Contrary, in Snapshot (1), we see
AAPL is out of phase with tidally locked stocks: this is evidence for an decreased 8. The or-
bit plot demonstrates clearly that 8 of a stock varies widely over time and cautions against
a common practice using the beta of a stock as the one-for-all measurement of its rela-
tive risk to the market. These already insightful conclusions are drawn from our glancing
over four snapshots, observant readers can surely make better use of the dynamic plot on
screen, a 1258-frame animation for a 512-dimensional time series, especially after paired

with existing stock investment tools.
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Figure 5.12 Closeup orbit
plots of unemployment
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Note. Snapshots of animated orbit plot of monthly unemployment rates of 50 states from
January 1976 to May 2018, time stamps indicated in Figure 5.11.
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Figure 5.13 Dynamic tidal
locking of S&P stocks.
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Note. Daily clo@#ng pricéZ)of S&P 500 Index stocks fronﬁlg)February 8, 2013 to Fef)q'uary 7,
2018, CRSP. (a) Tidally locked periods of AAPL and first 10 stocks, monthly bins indicated;
(b) tidally locked periods of AAPL and all other S&P stocks; and (¢c) market volatility and
tidal strength (wider gray area for higher volatility, narrower red area for stronger tidal

influence).
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Figure 5.14 Closeup orbit
plots of S&P stocks.
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Note. Snapshots of animated orbit plot of AAPL and S&P stocks, time stamps indicated in
Figure 5.13. Side views shown in bottom row. Top 25 tidally locked stocks for each slice
profiled in Figure 5.15. 101
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Figure 5.15 Lists of top
tidally locked stocks for
given slices

Slice 139: 8/26/2013

#1 XEL 53 #2 APA 52 #3 CHRW 41 #4 HAS 41 #5INTU 41
Xcel Ener%y Inc. is a utility holding Apache Corporation is an Ameri- ~ C.H. Robinson is a Fortune 500 Hasbro, Inc. is an American multi- Intuit Inc. is a business and finan-
company based in Minneapolis, ~ can petroleum and natural gas  provider of multimodal trans- national to?;and board game com- cial software company that devel-
Minnesota, serving more than 3.3 exploration and production com- rortation services and third-party  pany. It is the largest toy maker in ops and sells financial, account-
million electric customers and 1.8 pany incorporated in Delaware  logistics. The company offers the world in terms of stock market ing, and tax preparation software
million natural gas customersi... and headquartered in Houston.  freight transportation, transport... value, and third largest with rev... and related services for small...
e ————— L ———— L ———

#6 LRCX 41 #7 MHK 41 #8 WMT 41 #9 MCHP 32 #10 ARE 31
Lam Research Corporationisan ~ Mohawk Industries is an American Walmart Inc. is an American multi- Microchip Technology isan Ameri- Alexandria Real Estate Equities is a
American corporation thaten-  flooring manufacturer based in - national retail corporation that ~ can manufacturer of microcon-  major United States real estate

gages in the design, manufacture, Calhoun, Georgia, United States. operates a chain of hypermarkets, troller, memory and analog investment trust.
marketing, and service of semi- ~ Mohawk produces floor covering  discount department stores, and ~ semiconductors.
conductor processing equipme... products for residential and co... grocery stores.

I L —— I L — L r——

#11MA 31 #12 ZTS 31 #13 NUE 30 #14 UHS 30 #15 EBAY 28
Mastercard Incorporated is an Zoetis, Inc. is the world's largest ~ Nucor Corporation is a producer of Universal Health Servicesisan ~ eBay Inc. is a multinational e-com-
American multinational financial  producer of medicine and vaccina- steel and related products head- ~ American Fortune 500 company  merce corporation based in San

services corporation headquar-  tions for pets and livestock. quartered in Charlotte, North Car-  based in King of Prussia, Pennsyl- Jose, California that facilitates
tered in the Mastercard In- olina. Itis the largest steel produc- vania. It is one of the largest hos-  consumer-to-consumer and busi-
ternational Global Headquarter... erin the United States of Ameri... pital management companiesi... ness-to-consumer sales through. ..
Slice 799: 4/11/2016

#1 CBOE 132 #2 PKI 107 #3 LEN 106 #4 CME 89 #5 MMC 89

CBOE Global Markets is an Ameri- PerkinElmer, Inc., is an American  Lennar Corporation is a home con- CME Group Inc. is an American ~ Marsh & McLennan Companies,
can company that owns the Chica- multinational corporation focused struction and real estate company financial market company operat- Inc. is a global professional ser-
0 Board Options Exchange and  in the business areas of human  based in Miami, Florida. In 2017 ing an options and futures ex-  vices firm, headquartered in New

the stock exchange operator BATS and environmental health. the company was the largest change. It owns and operates York City with businesses in insur-
Global Markets home construction company in... large derivatives and futures ex-... ance brokerage, risk manage-...
L r————— L e—— L —— L ———

#6 NFX 87 #7 WBA 71 #8 LNC 70 #9 CScCO 69 #10 SNA 69

Newfield Exploration Companyis Walgreens Boots Alliance, Inc.is  Lincoln National Corporationisa  Cisco Systems, Inc. is an American Snap-on Incorporated is a design-
a petroleum, natural gas, and nat- an American holding companY Fortune 250 American holdinP multinational technology con-  er, manufacturer and marketer of
ural gas liquids explorationand  headquartered in Deerfield, Illi-  company, which operates multiple ?Iomerate headquartered in San  high-end tools and equipment for
Broduction company organized in nois that owns Walgreens, Boots, insurance and investment man-  Jose, California, in the center of  professional use in the transporta-

elaware and headquartered in... and a number of pharmaceutic... agement businesses through's... Silicon Valley, that develops, m... tion industry including the auto. ..

L —rr——— L — L rrr— L rr—— L —

#11 BRK.B 68 #12 VRSK 67 #13 NIKE 59 #14 CTSH 57 #151vZ 57
Berkshire Hathaway Inc. is an Verisk Analytics, Inc. is an Ameri-  Nike, Inc. is an American multina- Cognizant is a multinational cor-  Invesco Ltd. is an American inde-
American multinational conglom- can data analytics and risk assess- tional corporation that is engaged poration that provides IT services, pendent investment management
erate holding company headquar- ment firm based in Jersey City, in the design, development, man- including digital, technology, con- company that is headquartered in
tered in Omaha, Nebraska, United New Jersey, United States, serving ufacturing, and worldwide mar-  sulting, and operations services. It Atlanta, Georgia, United States,

States. customers worldwide ininsur-... ~ keting and sales of footwear, ap... is headquartered in Teaneck, N... and has branch officesin 20...
Slice 1201: 11/10/2017
#1 AEP 46 #2 CCL 46 #3 DAL 46 #4 STI 45 #5 TWX 45

American Electric Power is a major Carnival Corporation & plcis a Delta Air Lines, Inc.,, commonly ~ SunTrust Banks, Inc., is an Ameri-  Warner Media, LLC, doing busi-
investor-owned electric utilityin ~ United States-based cruise comf)a- referred to as Delta, isa major  can bank holding company. The  ness as WarnerMedia, and previ-
the United States of America, de-  ny and the world's largest travel ~ American airline, with its head-  largest subsidiary is SunTrust ously known as Time Warner Inc.,

Iiveringi electricity to more than  leisure company, with'a combined quarters and Iar?est hub at Harts- Bank is an American multinational
five million customersin 11...  fleet of over 100 vessels across ... field-Jackson Atlanta In-.... mass media and entertainment....
#6 BEN 43 H#TA 32 #8 AKAM 32 #9 ALB 32 #10 ANTM 32
Franklin Resources Inc. is an Agilent Technologies is an Ameri- - Akamai Technologies, Inc.isan  Albemarle Corporation is a chemi- Anthem, Inc. is an American

American holding company that, ~can public research, development American content delivery net- cal company with corporate head- health insurance company found-
together with its subsidiaries, s and manufacturing company es-  work and cloud service provider  quarters in Charlotte, North Caroli- ed in the 1940s, prior to 2014
referred to as Franklin Templeton  tablished in 1999 asa spin-off ~ headquartered in Cambridge, na. Itis a specialty chemical man-  known as WellPoint, Inc. It is the
Investments; itis a global inves... from Hewlett-Packard. The resul... Massachusetts, in the United...  ufacturing enterprise. largest for-profit managed healt. ..

#11 CAT 32 #12 CEL 32 #13 CSCO 32 #14 DIS 32 #15 DOV 32
Caterpillar Inc. is an American For- Celgene Corporation is an Ameri-  Cisco Systems, Inc. is an American The Walt Disney Company, com-  Dover Corporation is an American
tune 100 corporation which de-  can biotechnology company that multinational technology con-  monly known as Disney, is an conglomerate manufacturer of
signs, develops, engineers, manu- discovers, develops and commer-  glomerate headquartered in San ~ American diversified multination- industrial products. Founded in
factures, markets and sells ma-  cializes medicines for cancer and ?ose, California, in the center of  al mass media and entertainment 1955 in New York City, Dover is
chinery, engines, financial prod... inflammatory disorders. Silicon Valley, that develops, m... conglomerate, headquartered a... now based in Downers Grove, II...
Standard Industrial Classification (SIC) Code:

0100-0999 Agriculture, Forestry and Fishing |2000'3999 Manufacturing 5000-5199 Wholesale Trade 7000-8999 Services

1000-1499 Mining 4000-4999 Transportation, Communications, 5200-5999 Retail Trade 9100-9729 Public Administration
1500-1799 Construction Electric, Gas and Sanitary service 116000-6799 Finance, Insurance and Real Estate  1800-1999 not used

ote. Company blurbs retrieved from main entries on Wikipedia on June 19, 2018, with
minor editorial changes. Corresponding orliiot 2plots shown in Figure 5.14.
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Figure 5.16 Lists of top
tidally locked stocks.

Top Tidal Locked Stocks with AAPL (Accumulative)

#1 CBOE 13559 #2 NFX 12018 #3 GPN 11608 #4 PKI 11542 #5 CSCO 10351

CBOE Global Markets is an Ameri- Newfield Exploration Company is ~ Global Payments Inc. is an Ameri-  PerkinElmer, Inc., is an American ~ Cisco Systems, Inc. is an American
can company that owns the Chica- a petroleum, natural gas, and nat- can company providing financial - multinational corporation focused multinational technology con-

0 Board Options Exchange and  ural gas liquids explorationand  technology services PlobaIIyA in the business areas of human ?Iomerate headquartered in San
the stock exchange operator BATS  production company organized in headquartered in Atlanta, its stock and environmental health. ose, California, in the center of
Global Markets Delaware and headquartered in... is a component of the S&P 500... Silicon Valley, that develops, m...
#6 CL 10133 #7 SWKS 9940 #8 LEN 9932 #9 ALXN 9925 #10 CME 9524
The Colgate-Palmolive Company is Skyworks Solutions, Inc. is an Lennar Corporation is a home con- Alexion Pharmaceuticals Inc. isan  CME Group Inc. is an American
an American worldwide consumer American semiconductor compa-  struction and real estate company American pharmaceutical compa- financial market company operat-
products compangfocused onthe ny headquartered in Woburn, based in Miami, Florida. In 2017"  ny best known for its develop-ing an options and futures ex-
production, distribution and pro-  Massachusetts, United States. Sky- the company was the largest ment of Soliris, adrugusedto ~ change. It owns and operates

vision of household, health care... works manufactures semicondu... home construction company in... treat the rare disorders atypical... large derivatives and futures ex-...

#11 ECL 9384 #12 BAC 9382 #13 AKAM 9181 #14 ARE 9061 #15 ALK 8972

Ecolab Inc., headquartered in St. ~ Bank of America Corporation isan Akamai Technologies, Inc.isan  Alexandria Real Estate Equities is a Alaska Air Group Inc. is an airline
Paul, Minnesota, is an American ~ American multinational financial  American content delivery net-  major United States real estate  holding company based in SeaTac,

global provider of water, hygiene ~ services company head(fuartered work and cloud service provider  investment trust. Washington. It owns two certificat-

and energy technologies and ser-  in Charlotte, North Carolina. Itis headquartered in Cambridge, ed airlines operating in the United

vices to the food, enerqy, health... ranked 2nd on the list of largest... Massachusetts, in the United... States: Alaska Airlines and Hori-...
I I e —————

#16 AMT 8562 #17 IDXX 8541 #18 IVZ 8441 #19 JPM 8395 #20 UNH 8337

American Tower Corporationisa  IDEXX Laboratories, Inc. is an Invesco Ltd. is an American inde-  JPMorgan Chase & Co. is an Amer- UnitedHealth Group Inc. is an

publicly held company, owner and American multinational corpora-  pendent investment management ican multinational investment  American for-profit managed
operator of wireless and broadcast tion on the S&P 500 and NASDAQ- company that is headquartered in bank and financial services com-  health care company based in
communications infrastructure in - 100 indices engaged in the devel- Atlanta, Georgia, United States, ~ pany headquartered in New York ~ Minnetonka, Minnesota. It is 5th
several countries. American Tow... opment, manu?acture, and distr... and has branch offices in 20... City. in the United States on the For-...

Top Tidal Locked Stocks with AAPL (Transient)

#1 CBOE 133 #2 GPN 128 #3 NFX 125 #4 PKI 108 #5 LEN 107
CBOE Global Markets is an Ameri-  Global Payments Inc. is an Ameri-  Newfield Exploration Company is PerkinElmer, Inc., is an American  Lennar Corporation is a home con-
can company that owns the Chica- can company providing financial ~ a petroleum, natural gas, and nat- multinational corporation focused struction and real estate company

0 Board Options Exchange and  technology services Plobally. ural gas liquids exploration and  in the business areas of human  based in Miami, Florida. In 2017
the stock exchange operator BATS headquartered in Atlanta, its stock production company organized in and environmental health. the company was the largest
Global Markets is a component of the S&P 500... Delaware and headquartered in... home construction company in...
#6 JPM 95 #7 CL 93 #8 CME 90 #9 MMC 90 #10 ALXN 88

JPMorgan Chase & Co. is an Amer- The Colgate-Palmolive Company is CME Group Inc. is an American ~ Marsh & McLennan Companies, ~ Alexion Pharmaceuticals Inc. is an
ican multinational investment ~ an American worldwide consumer financial market company operat- Inc. is a global professional ser-  American pharmaceutical compa-
bank and financial services com-  products company focused on the ing an options and futures ex-  vices firm, headquartered in New  ny best known for its develop-
Eany headquartered in New York  production, distrigution and pro-  change. It owns and operates York City with businesses in insur- ment of Soliris, a drug used to

ity.

vision of household, health care... large derivatives and futures ex-... ance brokerage, risk manage-...  treat the rare disorders atypical...
I I L ———— L ——— I
#11 A0S 82 #12 ARE 80 #13 NOC 80 #14 NTAP 80 #15 AMT 78
A. 0. Smith Corporation is an Alexandria Real Estate Equities is a Northrop Grumman Corporation is NetApp, Inc. is a hybrid cloud data American Tower Corporation is a
American manufacturer of both ~ major United States real estate  an American global aerospace and services compan; %eadquartered publicly held company, owner and
residential and commercial water investment trust. defense technology company in Sunnyvale, Carifornia. Ithas  operator of wireless and broadcast
heaters and boilers. It is the formed by Northrop's 1994 pur-  ranked in the Fortune 500 since  communications infrastructure in
largest manufacturer and mar-.... chase of Grumman. The compa... 2012. several countries. American Tow...

L —— L —— L ———

#16 CMG 78 #17 LEG 78 #18 ZBH 78 #19 AKAM 77 #20 EXPE 77
Chipotle Mexican Grill, Inc.isan  Leggett & Platt, based in Carthage, Zimmer Biomet is a publicly trad-  Akamai Technologies, Inc.isan  Expedia Group is an American
American chain of fast casual Missouri, is a diversified manufac- ed medical device company. It~ American content delivery net-  global travel technology company.

restaurants in the United States, ~turer that designs and produces ~ was founded in 1927 to produce ~ work and cloud service provider [ts websites, which are primarily
United Kingdom, Canada, Ger-  various engineemining compo-  aluminum splints. The firm is headquartered in Cambridge, travel fare aggregators and travel

many, and France, specializing i... nents and products. headquartered in Warsaw, Indi-... Massachusetts, in the United...  metasearch engines.
Standard Industrial Classification (SIC) Code:
0100-0999 Agriculture, Forestry and Fishing ~ J2000-3999 Manufacturing 5000-5199 Wholesale Trade 7000-8999 Services
1000-1499 Mining 4000-4999 Transportation, Communications, 5200-5999 Retail Trade 9100-9729 Public Administration
1500-1799 Construction Electric, Gas and Sanitary service 116000-6799 Finance, Insurance and Real Estate  1800-1999 not used

Note. Company blurbs retrieved from main entries on Wikipedia on June 19, 2018, with
minor editorial changes.
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5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

Figure 5.17 News feed for

AAPL.

Slice 139:8/26/2013 Slice 285: 3/27/2014 Slice 799: 4/11/2016 Slice 1201: 11/10/2017

Cheaper iPhone seeks to retain core values FTI Apple Fails To Knock Out Ringer-Silencing Pate BLW Microsoft unveils Office reboot FTI Applelnsider: Review: Fitbit lonic aims at Apple BLG
IPhone Trade-In Program May Start Next Montl BFW Andy Grove and the line between 'good' and 'ba FTI Court Denies Stay to Apple Workers in FLSA Ca: BLW Applelnsider: This week on Al: Apple AR glasse: BLG
Apple looks to build market share with the cheay FTI PC Shipments 60.6m in 1Q, Down 11.5% Y/y, | BFW Microsoft boss launches Office for iPad FTI Fox Business: Why Won't Apple Inc. Talk About NS1

Apple's iWork for iCloud Service May Be Limite BFW The Apple Watch One Year Later: Success or Dud TST MORE: Apple to Start Global Sales of New IPhc BFW Apple Has Several Big Strengths It Can Leverage TST
Apple Suppliers Including CRUS, OVTI, AVGO ( BFW Apple, FBI, Encryption: Does Safety Mean No Ser BN Microsoft to Offer Office for iPad, Maybe a Bit La NYT Apple's Booming Stock Price Could Gain Anothe TST
Apple Said to Be Readying ‘Graphite’ IPhone 5 BFW Apple (AAPL) Stock Climbs as Barron's Sees 40% TST IN JAPANESE MEDIA: New Apple IPhone, SoftE BFW TheStreet.com: Apple's Booming Stock Price Cc NS1
Top Tech Analyst: This Week Will Offer an 'Early PRN Apple IPhone SE Expands Addressable Market by BI Microsoft's Office Apps for IPad Ushers in New APW Forbes: Carl Icahn Sold Apple Too Soon &It Cos FOR
Apple Top Holding Among Hedge Funds, Surp BFW IPhone Loses Momentum as Growth Shifts to Low BI FTC Approves Final Order in Apple Case Over K BFW Forbes: TripAdvisor Brands Hotels With Sexual FOR
U.S. TMT Pre-Market: DDD, SSYS New Buy at Ci BFW Israel to Levy New Taxes on Google, Facebook in BN *FED TRADE CMSN: FTC OKS FINAL ORDER IN ¢ BFW Forbes: Apple Loop: Apple Confirms iPhone X F FOR
Microsoft New CEO Could Tap $77 Billion of Cash BI Mississippi Can Resume Google Investigation; WPT Microsoft opens the door to a world beyond Win FTI MacRumors: Apple's iPhone X vs. Google's Pixe BLG
Steve Ballmer’s Exit May Be Another Canary in Co BI [Delayed] Cutting Apple Estimates And Target C BTG Microsoft CEO Satya Nadella Unveils Office for IF BN Applelnsider: Video: Apple's Clips 2.0 puts you BLG
Pandora Scraps Mobile Limit on $15 Billion Radic BI [Delayed] Smartphone Replacement Cycles Are BTG Global Mobile Phones: Analyze Industry Eamings BI New York Post: Some iPhone X buyers report ar NYP
Microsoft New CEO May Cede Consumer to Apple BI U.S. vs. Apple: New Battles in NY, Massachusett BLC BlackBerry, Microsoft-Nokia Key in Handset Earnii BI CBC: Apple admits some iPhone X models free: CBC
DoCoMo Rises on Speculation Carrier to Release BN MAZ Launches Home: Connected TV Platform  PRN MORE: Microsoft Office for iPad Will Have Free BFW Smarter Analyst: 2 Sectors, 2 Top Stocks for 201 BLG
SEC Proposal, CFTC Rules, BB&T, Monte Paschi, # BN It's Time the World Learned How to Say H-U-A\\ BBO Microsoft's Nadella Unveils Office for IPad in Mo BN The Top 10 Songs And Albums on the [Tunes St APW
Apple, Google, Bosch, CIT Group: Intellectual Prc BN Moscovici Says Google, Facebook, Amazon, Mt BFW *MSFT REPORTS DEVICE MANAGEMENT SERVIt BFW Next Web: Some iPhone X displays plagued by BLG
Sony Seen Growing Smartphone Profits Amid : BFW The Top 10 Songs And Albums on the ITunes St APW Microsoft Shows Office Software for Apple's IPa BFW Jekyll or Hyde? Does It Even Matter in High-Gr BFW
Bloomberg Industries Most Read: E-Cigarette Mo BI U.S. EQUITY PREVIEW: AAPL, BSX, CLBS, DIS, O BFW Apple to Start Global Sales of New IPhone in St BFW Rolling Stone: Gift Guide: The Best Smartwatch NS1
Lenovo Takes Page From Apple in Chasing Sams BN Streaming Lifts Music Sales Higher for First Tim SYH PREVIEW BLACKBERRY 4Q: Focus on Cash Burt BFW MacRumors: MacRumors Giveaway: Win Custo BLG
Ballmer resignation unlikely to quell unease ove FTI U.S. Presses Bid to Force Apple to Unlock iPhoni NYT *SHARP, JAPAN DISPLAY, LG DISPLAY TO SUPPL BFW SlashGear: If the 2018 iPad with Face ID looks t BLG
Apple Said Tested 64-Bit Chips for iPhone 55:  BFW Op-Ed Contributors: Why Apple’s Stand Against NYT *APPLE TO START GLOBAL SALES OF NEW IPHO BFW IBD: Stocks Down, Apple Still Solid; Will These : IBD
Silicon Valley's Older Workers Fear Discriminat BFW BARRON'S ROUNDUP: Gross Calls for Rate Rise BFW BlackBerry Is More Than Just a Handset Vendor, ¢ BI San Jose Bus Jrn: Here's a look at 8 Bay Area st NS1
Global corporate bond issuance at lowest level ir FTI Why Apple's Stand Against the F.B.I. Hurts Its O NYT Microsoft, Nokia $7.5 Billion Integration Key to V BI Senate Plan Better for Business, But Corporate Ta: Bl
Rewards await Corporate America if it's canny wi' FTI Brooklyn Case Takes Front Seat in Apple Encryr APW NRG Pursuing Rooftop Solar to Avoid 'White Elej BN Apple Clips Selfie Scenes lets users put selfies o FEX
Cheaper local mobiles beat Apple,Samsung sale PTI Justice Dept. Says It Still Wants to Force Apple” WPT Android Dominates Global Market as 10S Fights f BI IBD: OLED Stock Displays Continued Strength, + IBD
Here's What Steve Ballmer Didn't Get About th WPT US Judge Ordered Apple to Help Retrieve Date APW Microsoft Buys Nokia, While Apple, Google Go foi BI MacRumors: Apple's Extended 2017 Holiday R BLG
BARRON'S ROUNDUP: Puerto Rico's Debt Woe BFW Apple’s Fight With U.S. Over Privacy Enters a Nev BN New Smartphones, Related Hardware Among Top BI Applelnsider: Some iPhone X owners report my BLG
Paul Krugman: On The Symmetry Between Mict NYT Gadgetwise: How to Switch to iPhone From Anc NYT Low-End Phones, Wearables on Stage at 2014 Mc BI Applelnsider: Deals: 9.7" iPads for $299, 10.5" BLG
Mobile Internet Innovation Highlights Macwor PRN Apple Resisting a February IPhone Search Order BN BlackBerry Leads Connected Cars Google Covets BN Forbes: Apple iPhone X: Fix For Cold Weather P FOR
CEO Ballmer Exits After Failing to Take Microsoft BN Apple iPhone SE, iPad Pro and new Watch buyir FEX BlackBerry Slump, Microsoft-Nokia Deal Key in H: BI Applelnsider: Apple Watch gets special Veteran BLG
Ballmer will leave behind an unfinished agenda FTI Judge Orders Apple to Assist FBI in Massachus BFW 59% Sales Drop Puts BlackBerry Lowest of Hands¢ BI Gizmodo: iPhone X Doesn't Work Right in the ¢ BLG
Why Jobs worked as a manager but notin a mov FTI Apple, FBI headed for another battle over drug DPA Apple EPS Estimates Rise 0.3%, Trail Sony, BlackB BI Apple Could Gain Another 12% From Here, TheS TST
Nasdaq defends handling of longest outage in it FTI US keeps Apple encryption battle alive in drug ¢ PTI Handset Vendor Margins in Focus as Average Sell BI IBD: Netflix, Apple Supplier Lead 5 Stocks Still E IBD
Financial, Research Information Not Used In Af BLW US pushes Apple to unlock iPhone used in New FTI Canon to Showcase Printand Scan Solutions at BUS Fortune: You're Not Alone: Some Users Report t FOT
Petrobras Outspends Exxon Researching Next Oi BN A real-world solution to the tax repatriation ruckt FTI Spotify Said to Plan IPO in 3Q: Quartz BFW MediaTek Diversifies Sales to loT Even Amid Weal BI
AtApple Inc,, birth of iPhone 5, 5C set to heral FEX Apple’s Fight With U.S. Over Privacy Enters a Nev BN Apple Patent Filing May Enable Transparent Te BFW Applelnsider: Extreme test shows OLED iPhone BLG
Microsoft's 9% Enterprise Growth Suggests M&A BI FastFT: US fight with Apple over privacy continue FTI Height: Senate Judiciary to Resume Patent Reft HTA MacRumors: Apple Community Envisions Bette BLG
Microsoft's Next CEO Needs to Shift Focus as PCs BI Apple's Fight With U.S. Over Privacy Enters a Ney BN *SHARP TO MAKE LCD PANEL FOR NEW IPHON BFW TheStreet.com: Why Apple Could Gain Another NS1
Ballmer to leave Microsoft within a year FTI U.S. Presses Ahead With Appeal in Brooklyn iPl BLW U.S. PRE-MARKET MOVERS: ADXS BAX C CAMT BFW How the ‘Warren Buffett of Arabia’ Built His Fortt BN
US proposes shorter e-books injunction for Appli PTI Profitable Share Gain Remains HP's PC Segment BI *CORRECT:SHARP TO PROVIDE LCD PANEL FOF BFW Investopedia: iPhone X Will Help Apple Beat S¢ NS1
Apple Duels With U.S. Over E-Book Price-Fixing f BN How Silicon Valley — Not Just Apple — Became WPT King and Quercus: what about the windfall FTI Fast Company: Could The iPhone X's Most Inan NS1
Nasdag halt puts pressure on Greifeld FTI IPhone Backdoors Would Pose a Threat, French F BN Apple Patent Filing Suggests Sapphire Display BFW The Fly: Canalys: iPhone 8 Plus out-ships iPhor NS1
Microsoft Needs a Tech Visionary to Jump-Start G BI Apple iPhone SE, iPad Pro and Watch available i FEX BlackBerry Falls; SocGen Cuts, Sees $6/Share ¢ BFW [Delayed] Moming Research Summary OoPY
Ballmer Retirement Announcement a Surprise, G Bl United States Software and Information Technc ACQ Device Shipments to Rise 6.9% Worldwide Thi: BFW The Fly: Apple acknowledges iPhone X becomit NS1
DOJ Proposes Shorter E-books Injunction for A APW Put Away Your Keyboard: It's Time to Talk to Our TEL IN CHINESE MEDIA: ‘Negative List' for Brokerai BFW Apple Finally Fixes Annoying IPhone Autocorrec TEL
Even Cord Cutters Will Have to Pay the Cable Bill BN Comment: The clampdown on tax inversions is o FTI Apple Store Workers Seek Stay In FLSA Case Ur BLW Will Qualcomm Agree to a Deal With Broadcom NYT
Apple Nears Golden Cross, Monsanto Forms Di BFW Tim Bradshaw: Apple iPad Pros New tablets are £ FTI Apple Buys Hyundai Bonds as Investor Pool Wid BN Next Web: Apple’s latest acquisition could enak BLG
Internet launches fightback against state snoope FTI FBI Continues to Debate Sharing IPhone Hack APW Twitter Preparing New Music Strategy, WSJ Say BFW Barron's: Apple Supplier AAC Technologies Jun NS1
Ballmer's Exit Leaves Microsoft Searching for He BN Why BTIG Is Cutting Apple's Earnings Estimates BLC Labor Groups Challenge Apple on Chinese Plai BLW Fanuc's Rosy 2018 Order Outlook Amid Smartph BI
Ballmer's Smartphone Misdial Put Microsoft Behi BI Apple Among 10 Cos. That Screen Well for Est. BFW Apple to Increase Battery Orders to China's Des BFW California Governor Avoids Criticizing U.S. Tech BLW
Apple Objects to U.S. Revised E-Books Remedy F BN Blueshift Research's PayPal Idea Proposal SFT *APPLE TO INCREASE BATTERY ORDERS TO CHI BFW MacRumors: Apple Launches New 'This Weeker BLG
Why Steve Jobs worked as a manager but notin FTI FBI Bought Tool to Break Into IPhone Used in Ter BN Daily Briefing: Apple-Samsung, King Digital, D BLW Apple reiterated its commitment to diversity - BDR
Mobile Handset Makers: The Eight Most Critical T BI FBI's IPhone Hack Doesn't Work on Newer Moc BFW Global Mobile Phones: Assess Industry Valuation: BI Patently Apple: Apple Acquired InVisage with w BLG
Apple, Samsung Win Appeals Ruling to Keep Fir BN FBI Debates Sharing IPhone Hacking Details W APW Mobile Handset Industry Valuation Assessment: | BI HTC Vive VR Headset Waxes as Smartphones War BI
*APPLE AND SAMSUNG DON'T HAVE TO REVEA BFW Tech Stocks Dominate List of 53 Cos. W/ Tax Ra BFW EU, China Deal to Lower Threat of Tariffs on Hui BFW Trending: Nutella Fans Flip Over Recipe Tweak; WPT
Windows Runs on 90% of Notebooks as Ballmer I BI Apple (AAPL) Stock Slumps as BTIG Warns of Lon TST BlackBerry delays executive's Apple move FTI Applelnsider: Apple acknowledges iPhone X be BLG
High-End, Low-End Unit Gulf a Key Handset Therr BI Dustin Volz: FBI director Comey says iPhone ha TWT Comcast's Power Unveiled Courtesy of Apple Ri BBO Apple and Tesla Make Low-Key Buys; Small Caps TST
Microsoft Windows 3.6% of Smartphones as Ballr BI Some For-the-moment Final Thoughts on Appl WPT Microsoft's Mobile Suite May Challenge SAP, VM BI Fox Business: Better Buy: Corning Incorporated NS1
U.S. Files Revised Proposal for Apple E-Books C BFW Free Data Streamed for Consumers by T-Mobile at BI Russia Govt Switches From Apple to Samsung ™ BFW MacRumors: Apple Working on Fix for Bug Cau BLG
Microsoft's Ballmer Failed to Capitalize on Smarty BI Oversupply, Weak Pricing Squeeze Memory-Chip BI *APPLE LITTLE CHANGED, GIVES UP MOST OF E BFW TheStreet.com: Apple and Tesla Make Low-Key | NS1
Microsoft Total Return Under Ballmer Trails S& BFW Hard to Say When Apple Tax Case Will End: EU BFW U.S. Stock Options With Biggest Changes in Imp BN TheStreet.com: Apple Has Several Big Strength NS1
PANDORA STREET WRAP: Analysts Negative on BFW Apple Talks Up Services, But It's Still a Device C BBO JAMF Software Enables Apple's New Enterpris MWR Wells Fargo Clearing Services Adds Baker Hughe BN
Google Buys Wearable Technology Patents From BN White House Won't Support Encryption Bill; FE WPT Makor - TECH VIEW AAPL US (545 last) - close € MKR San Jose Bus Jrn: Apple buys Newark startup t NS1
P: Beat Our Forecast On Strong Results, Guidan ABF CORRECT: Apple Ests., PT Cut at BTIG on Hands BFW Gamco's Ward Says Biggest Problem for Apple Is BN SiliconANGLE: Apple has quietly acquired quar WE1
U.S. TMT Pre-Market: P 3Q View Misses; Jefferi BEW Why One Analyst Thinks Shares of Tech Giant Ap TST U.S. PRE-MARKET MOVERS: APP BODY CXDC F BFW We now know who makes the $14,000 chairs ¢ BDR

Note. Retrieved from Bloomberg Terminal for AAPL top news on or shortly before stated
dates, with minor editorial changes. Bloomberg news sources in bold.
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5.3 Orbit Plot

Figure 5.18 News feed for
U.S. Economy.

Slice 139:8/26/2013 Slice 285: 3/27/2014 Slice 799: 4/11/2016 Slice 1201: 11/10/2017

China Profits Jump as Yi Sees Limited Effect Fror BN Asia Rates/Credit Week Ahead: RBA, RBI Rate [ BFW U.S. President Barack Obama is happy with th SWM Pacific Nations Get Framework to Salvage Trade [ BN
Asian Stocks Fall as Kerry Says U.S. to Hold Syria BN Fed's Evans Says He Would Wait Until Early 20 BFW Is the U.S. Strong Enough for Two Rate Hikes?  BLC APEC Ministers Vow to Fight Protectionism as Tr. BN
FX DAYBOOK EUROPE: German Ifo Survey, U.S BFW Don't raise rates and keep inflation party going SYH Missouri Removing Box on Convictions From J APW Top Predictions for U.S. Home Prices In 2018 TST
Bitcoin Meeting, OTC Derivatives, Trump Univers BN *FED'S EVANS SAYS U.S. 1Q GROWTH PROBAB BFW What a Stronger Yen Means for Investors BLC Trump Tours Asia; Brexit Debate; Art Sale: Week BN
Insider Trading; Galleon's Collapse: Top Busines: BN _Evans Sees Fed Raising Rates in Second Half of 2 BN Econs - US-The forgotten Unemployment Cohor MIF [Delayed] Large Cap Banks: Fed Weekly: C&! Al JPM
N.J. Jail Is Home for Husband as Lifetime of Alin BN Global markets paused amidst better than expe KCF US economic data docket is very light today (1: UOB US/EU/UK economy: Subsidence EIU
0il Gains With Yen on Syria as Asian Stocks, Trea: BN *EVANS: TIMING OF 1ST RATE INCREASE NOT A BFW ECB Counts 500-Euro Cost Even as Death of Cast BN Predictions for 2018 U.S. Home Prices ST
NORDIC DAYBOOK: Fed's Williams, ECB's Coet BFW Evans Sees Fed Rates Near Zero ‘Well Into’ Next* BN IN FOCUS: BOJ's Harada, India Inflation; Stock BFW Bloomberg Markets: NYU's Lustbader on Crispr ¢ BN
U.S. Natural Gas Declines After Gaining Third Tin BN *EVANS SAYS HE EXPECTS 1.25% FED FUNDS F BFW Fed's Global Focus Keeps U.S. 10-Year Yields Nea BN Bloomberg Markets: Dave Wilson's Stock of the | BN
Chinaa Cloud' Over Emerging Markets, Condor BN *FED'S EVANS SAYS HE'D WAIT UNTIL EARLY 2( BFW SCOTIABANK ECONOMICS: Closing Points (Apri SCO President Trump on China Trade Deficit; Intervi APW
*CHINA CAN REACH 7.5% GROWTH TARGET, KI BFW *EVANS SAYS FED WILL DO WHAT ITTAKES FOF BFW Missouri Removing Box on Convictions From J APW Bloomberg Markets: Cordaro on Market Valuatic BN
U.S. Must Consider Spillover Effect of QE Exit, ( BFW Evans Sees Fed Raising Interest Rates in Second BN DOE Coal Prices by Region for the Week Ended A BN Nobel Laureate Phelps on Inflation and Fed Poli BLC
*CHINA'S MONETARY POLICY TO REMAIN PRUI BFW *FED'S EVANS SAYS INCREASING QE PROBABL BFW U.S. Gasoline Prices for the Week of April 11: Sur BN Business Insider: The Fed could be tightening r BLG
*CHINATO MAINTAIN PROACTIVE FISCAL POLIt BFW *FED WOULD HAVE MADE INTEREST RATES NE! BFW Obama, Fed Chair Yellen Discuss Outlook for E APW U.S. Treasury Statement and Cash Balance for Nc BN
130827 Technology Sector: Slightly improved s OIR For the US data docket today (28 March), the U UOB Former Yellen Adviser Unveils Plan for Fed Refo BLC Bloomberg Markets: Bond Report, Eco Brief for I BN
*US "MUST' CONSIDER SPILLOVER EFFECTS OF BFW Citigroup ‘Stress Test’ Said to Send Corbat Scra BFW Missouri Removing Box on Convictions From J APW Forbes: Simple, Bilateral Policy In A Complicate FOR
*BROOKFIELD AUSTRALIA CEO POWELL SPEAK BFW Fed Retreat From Mortgages Nears Tipping Poi BLW Fed's Kaplan on U.S. Economy, Policy Outlook (A BN Dollar Drifts Lower in Week Focused on Tax Chan BN
Loans Deflecting Bond Rout Lure Western Asset: BN Pending Sales of Existing Homes In U.S. Declin BLW The Fed's Balancing Act With Inflation BLC Federal Retirement Plan Rose to $511.7 Billion i BN
*BRICS COUNTRIES WILL DISCUSS FX RESERVE BFW Jobless Claims in U.S. Unexpectedly Decreasec BLW U.S. Foreign Exchange Rates for the Week Endec BN Mnuchin: ‘Minor Differences’ Between House . BFW
G-20 to Discuss Possible Impact From QE Exit, BFW Economy in U.S. Expands More Than Previoush BLW Fed’s Kaplan Says Weak Data Show There's No N BN Central Bank Watch: Countries, Rates, Changes ( BN
America Most Resilient Five Years From Worst GL BN China Faces "Mini' Debt Crisis, Rabobank's Every BN Which Party Will Benefit From the Weak Obam WPT Fed's Bullard Sceptical Low Unemployment Wi BFW
Dealbook: Five Years After TARP, Misgivings on | NYT FED'S EVANS SPEAKS ON U.S. ECONOMIC POLIC BN Obama Is ‘Pleased" With Yellen Amid Signs of S| BN U.S. INDUSTRIAL AGENDA: GE Investor Day, Go BFW
Won Best in Asia as Traders Flee Rupee-to-Real K BN *FED'S EVANS SEES ZERO INTEREST RATE "WEL BFW Stock Rally Stalls as Earnings Season Kicks Off  BLC Consumer Sentiment Slips in U.S., Yet Tax-Cut Ho BI
Falling aircraft demand hits US durable goods or FTI Fed's Evans Sees Interest Rates Near Zero "Well BFW White House Readout of Obama Meeting with BFW Gallup Poll: Trump Approval Rating 37%; Disapp BN
Mortgage Plunge on Fed Taper Limiting Econon BN Closing Bell: TSX, Wall Street fall amid mixed | NPW *OBAMA, YELLEN DISCUSSED NEAR, LONG-TEF BFW Fed's Bullard: U.S. Growth Qutlook Brighter, In BFW
Pimco’s Hodge Says Demand for Bonds to Recov BN Fed's Evans Set to Speak on U.S. Economy, Poli BFW Lew: | Hope We've Stopped Inversions Pipeline BFW Saudi Shakeup Drives Oil Gains, Tax Reform Hope BI
ASIA RATES/CREDIT DAYBOOK: China Profits, P BFW Fed's stress tests set bar high for Europe FTI U.S. Raw Steel Production for the Week Ending # BN BI Economics: Other Regional Week Ahead Sumn BI
Commodities Daybook: Corn, Soy Surge Mostin BN Fed under fire on ‘opaque’ stress tests FTI *LEW: WE'LL HAVE EXCITING ANNOUNCEMEN" BFW Fed's Bullard Says Gov. Powell Is Effective Cons BFW
Will Obama Make the Fed Even Worse With Su BBO Initial Jobless Claims Fell Unexpectedly In Late BLW USDA Crop Progress by State for the Week of Apr BN *24 COUNTERPARTIES TAKE $39.7B AT FED'S F BFW
Hungary Set to Slow Rate-Cut Pace After Fed Sigi BN Fed's Evans Sees Rates Rising in 2H 2015, Wot BFW *LEW: PEOPLE SHOULDN'T BE SURPRISED WE BFW *FED'S BULLARD SAYS FED POLICY RATE ABOU BFW
The Strong Case for Optimism About U.S. Grow BBO *EVANS SEES U.S. GROWTH RUN RATE ABOUT BFW USDA Crop Conditions by State for the Week of A BN Canada Rig Count Rose by 11 to 203 Week Endi BN
All About the Velocity of Corporate Income Grov SBY *FED'S EVANS SEES RATES RISING IN 2H 2015 BFW U.S. Crop Progress for April 10: Statistical Summ BN U.S. Rig Count Rose by 9 to 907 Week Ending N' BN
Closing Bell: TSX little changed, durable good NPW Paul Krugman: America's Taxation Tradition ~ NYT Which Party Will Benefit From the Weak Obam WPT Senate Plan Better for Business, But Corporate Ta: BI
Lew Tells Congress Treasury to Hit Debt Limitin ! BN U.S. Economy Grew 2.6 Percent in Fourth Quar WPT U.S. Treasury Statement and Cash Balance for Ap BN *NY FED BEGINS DAILY OVERNIGHT REVERSE f BFW
Mexican Peso Plunges Most Among Major Curre BN *CORRECT:TARULLO COMPLACENCY OVERRISI BFW Fed's Global Focus Keeps U.S. 10-Year Yields Nea BN_Economics: Consumer Sentiment Slips, Tax-Cut BBF
U of Chicago’s Kashyap Discusses Key Jackson H BN *TARULLO: MORE WORK NEEDED TO ADDRESS BFW *LEW: NO ONE ON HORIZON TO TAKE OVER U. BFW U.S. Repo Close: Old 3-Year Note at Lowest Rate, BN
SCOTIABANK ECONOMICS: CLOSING POINTS, A SCO Tarullo Defends Fed's Move to Supervise Foreign BN What Corporate Credit Says About Health of Cor BLC Bloomberg Intelligence FICC Weekly Strategy Bri Bl
Breakeven Inflation Rate: Five-to-Ten-Year Forwai BN *TARULLO DEFENDS FED'S MOVE TO SUPERVIS BFW Bloomberg Economic Evaluation of States (Table BN St. Louis Fed's GDP Model Sees Q4 U.S. GDP at 2 BN
N.J. Jail Is Home for Husband as Lifetime of Alin BN Fed of 1970s Shows Capacity Clues May Misleac BN Central Bank Watch: Countries, Rates, Changes ( BN St. Louis Fed Real GDP Nowcast Model Sees U. BFW
The Insiders: Bad News Is Good News for the O WPT Best Start Since '09 Defies Forecast of Annual Lo BN White House Briefing: Obama-Yellen Meeting O BN Global Inflation Watch: World Inflation at 3.7% ( BN
U.S. Gasoline Prices for the Week of Aug. 26: Sur BN Clarification: Federal Reserve stress tests FTI Top Forecasters of the U.S. Economy Q1 2016: Ri BN Global Inflation Watch: Economies Sorted by Inf BN
Durable-Goods Drop Imperils Outlook for U.S. Pi BN INSIDE AUSTRALIA: AUD Strong Before U.S. GD BFW Kaplan Says Weak First Quarter Means Now Nc BFW Citi Economic Surprise Comparison by Region BN
TSX little changed, durable goods data raises g CNP USA economy: Quick View - GM CEO to testify as EIU *KAPLAN SAYS HE'S OPEN-MINDED ABOUT PO BFW U.S. Oct. ISM Regional Purchasers Index Compal BN
New York City Water Reservoirs Above Normal Ci BN ASIA RATES/CREDIT DAYBOOK: Japan Inflation, BFW *KAPLAN: DATA DOESN'T SUPPORT A FED RATE BFW New York Fed's GDP Model Sees 4Q U.S. GDP at BN
Lipsky, Taylor Weigh in on Jackson Hole Del (Au BN Economists: Texas Economy Strong, Getting St APW Obama Is 'Pleased’ With Yellen, White House Sa BN_U.S. REACT: Consumer Sentiment Slips, Yet Tax-Ct BI
BofA's Harris Says Fed Won't Start Taper in Septe BN Banks Lending Like It's 2007 Belied by Deposits BN U.S. Diesel Prices for the Week of April 11: Sumr BN Houston Purchasing Index Rises for Second Con: BN
Fed Asks Judge to Leave Swipe Fee Rules Alone BN U.S. Reports Modestly Better Economic Growth NYT Bloomberg Advantage: Todd on Housing, Heal BBR U.S. Consumer Sentiment Unexpectedly Falls Frc BN
Lew Tells Congress Treasury to Hit Debt Limitin ! BN US economy shows signs of strength SYH Kaplan Says Fed Should Be 'Cautious, Patient’ BFW U.S. October Wages Rose 3.4% Y/y: Atlanta Fed ( BN
U.S. Foreign Exchange Rates for the Week Endec BN Yellen Might Help Asia Kick the Easy-Money H: BBO Obama "Cares Deeply’ About Preserving Fed In BFW FastFT: US consumer sentiment gauge cools in N FTI
Ford's Fusion Output Boost Tests $2,300 Premiu BN Wal-Mart Sues Visa Claiming Card Transaction Fe BN Premature to Rule Out "Helicopter Drops, Bern BFW_U-MICH ECONOMIST CURTIN ON NOV. PRELIM S BN
U.S. Crop Progress and Conditions for Aug. 25: ¢ BN Top 300 Billionaires' Wealth Falls to $3.581 Trilli BN Obama to Meet With Fed Chair Yellen to Discu APW U.S. Consumer Sentiment Unexpectedly Drops # BN
Lew Tells Congress Treasury Will Hit Debt Limit BFW Euro Drops to 3-Week Low Against Pound on Ou BN Is the U.S. Economy About to Go Bankrupt? Here TST Nov. Preliminary Univ. of Michigan Sentiment Re BN
U.S. Treasury Statement and Cash Balance for Au BN Dick Bove Blasts Citi's "Horrendous' Error in Mex BN *EARNEST SAYS DOESN'T EXPECT OBAMATO U BFW Preliminary Nov. Michigan Sentiment Fell to 9 BFW
U.S. Diesel Prices for the Week of Aug. 26: Sumr BN Action Economics's Englund Says Fed Focus on k BN Obama 'Pleased’ With Way Yellen Has Done Jc BFW *MICHIGAN PRELIM. NOV. CONSUMER SENTIN BFW
Yellen Has 45% Chance to Replace Bernanke, ¢ BFW Contrarian Corner’s Eyes Results of 7-Year Note S BN Fed's Kaplan Says Sub-Zero Rates an Option, Pl BFW_U.S. Nov. Prel. Michigan Consumer Sentiment (T BN
Fed Seeks Federal Circuit Writ To Block Deposit BLW COULD THE BOC SERIOUSLY LAG THE FED SCO WHAT'S PRICED IN: No Changes For BOE, BOC BFW U.S. ECO PREVIEW: Univ. Mich Consumer Sent BFW
*U.S. TREASURY TO REACH DEBT LIMIT IN MID- BFW St. Louis Federal Reserve Money Multiplier (Tabl BN *FED'S KAPLAN: NEGATIVE RATES HAVE NUMB BFW GSC COMITE DIARIO DE ESTRATEGIA 10 NOVIEN GST
U.S. June Federal Reserve Finance Companies R BN Fewer Firings a Sign U.S. to Regain Growth Mo BN *KAPLAN: GREATER DEBT IN ADVANCES ECON( BFW Powell Says Plan to Replace Libor Should Work BFW
U.S. June Homebuyer Affordability Index: Sumn BN Maryland Business Activity for March (Table) BN *EARNEST SAYS OBAMA "PLEASED' BY WAY YEI BFW Donald Trump lauds PM Narendra Modi's econc FEX
Fed Asks Judge to Leave Swipe Fee Rules in Plac BN Breakeven Inflation Rate: Five-to-Ten-Year Forwar BN What's Behind the Disconnect Between Stocks, BLC Quartz: What's left to explain Janet Yellen's disi NS1
U.S. Raw Steel Production for the Week Ending # BN Carolinas Business Activity Decreased in March ( BN Bloomberg Advantage: Penner on Positives of  BBR GSC INFORME DIARIO DE ESTRATEGIA 10 NOVIF GST
U.S. Poultry Condemned by Inspectors for July (' BN Federal Reserve Balance Sheet: Snapshot (Table! BN The Bloomberg Advantage: Cleveland on new f BBR Fed May Have No Choice But to Accelerate Rate BBO
U.S. Chilled and Frozen Ready-To-Cook Poultry fc BN Fed Balance-Sheet Assets Rise $4.9b to $4.227 BFW Fed's Fixed-Rate Reverse Repo Facility Draws $ BFW Quarles in Charge? No, But He'll Dilute Dodd-Frai B
U.S. Poultry Slaughter and Live Weight for July ( BN U.S. Money Supply Components for Week Endin BN Fed's Kaplan to Speak at Community Forum in BFW UniCredit Global Economic Forecasts as of Nov. 1 BN
U.S. Poultry Slaughter for July: Summary (Table) BN U.S. Mortgage-Backed Securities Purchase Progr BN Gallup Economic Confidence Tracking Poll Rises BN How will US companies use additional profits? 1XS

Note. Retrieved from Bloomberg Terminal for U.S. Economy top news on or shortly before
stated dates, with minor editorial changes. Bloomberg news sources in bold.
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5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

5.4. INTERACTIVE PLOTS

We now present the last set of interactive plots to help researchers exploring dynamic phasal
relations of high-dimensional time series. These plots take on the familiar appearance of
heat maps—that is, they all use color gradients to encode level values—and therefore do
not need elaborations on their design. What’s new here are their interactive features and the
novel use of programming libraries not specifically developed for statistical research. Since
these libraries are bleeding-edge graphic toolkits for the Internet, through the example of
these elementary plots, we hope to motivate future research and development of web-based
interactive graphic tools to explore the dynamic structures of high-dimensional time series.
Since our focus here is to get familiar with novel plot features, to prevent us from being
distracted by the expository need to set up other examples of high-dimensional time series
which by their high-dimensionality need more space to contextualize and motivate, let’s

continue with the example of state unemployment rates introduced in Section 5.3.

Figure 5.19 presents a plot for lagged cross-correlations in the layout of a heat map,
where we plot out the lagged correlations of Alaska with all states (including itself and
D.C.) As before, the pivot component is marked by an asterisk (*). To better differentiate
color shades, we utilize the color schemes from ColorBrewer (the so-named 9-class RdPu
scale for positive correlations and PuBu for negative correlations), designed by Cynthia A.

Brewer at the GeoVISTA Center at Pennsylvania State University.

Since a major drawback of heat maps is that they do not scale well for panels of large
dimensions (see Section 5.1), in our example, rather than laying out all 512 x 60 = 156, 060
colored cells, we only display a small block of the cells (2% of the total number of cells) at

a time representing all autocorrelations and cross-correlations related to the pivot compo-
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Figure 5.19 Two modes of
interactive heat maps for
lagged correlations.
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Note. Stacked correlation plot (a) with fixed coordinates, by state names shown; and (b)
with dynamic coordinates, by L0 correlation shown. Both plots truncated at Lag 30. Users
can toggle between the two modes by clicking the blue icons displayed. Mouse over each
cell gives correlation details.
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nent (Alaska) and instead allow users to interact with the plot and explore other blocks
of cells of their choosing. Users can switch between the pivot component by clicking on
an arbitrary colored cell on the plot: on mouse release, the plot will display a subtle tran-
sition animation originated from the click point to remind users of the click event before

presenting a new plot for the pivot component chosen.

Another problem of heat maps is that because of the grid layout, ironically it is often
difficult to tell what coordinates each cell has, especially for those lie towards the center
of a heat map, far away from both axes. This navigational problem is exacerbated for high-
dimensional datasets. Heat maps like Figures 5.2 and 5.4 give intuitive presentations of
the overall levels of cross-correlations in the dataset but are impossible to navigate due to
the high dimensionality. Our new plot offers an easy solution. Since each cell is rendered
as a distinct node on the Document Object Model (DOM) tree for the plot (see Section
5.5), with simple JavaScripts to manipulate the DOM structure, we can provide additional

interactive features to help users navigate the plot.

A tooltip automatically appears above the mouse cursor if the user’s mouse hovers over
a cell for a specified duration of time: the tooltip element dynamically displays detailed
information about the cell, including the correlation pair (e.g., “Alaska-Colo.”, the former
is the pivot component), the lag level (e.g., “L5”), and the correlation value calculated (e.g.,
“.5277). In addition, to easily sift out components with significant correlations, users have
the option to sort the cells by correlations. To toggle between the two sort modes, users
can click either the button labeled (by alphabetical order of a predefined array of
variable names, in the current example, the two-letter postal abbreviations of all U.S. states
and D.C.) or the one labeled (by Lag-0 Correlations). Both interactive features

are implemented for all applicable plots presented in this section.
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5.4.1 TunnNEL Pror

Building upon the classical heat map design, we now introduce an improved lagged cor-
relation plot, the tunnel plot (see Figure 5.20). Its atypical circular look is the natural
solution to this classical infographic design problem: we want a long axis to arrange the
large collection of variables but we also desire a large plotting canvas to fit in all the colored
cells for different lags. Since the circle is the plane curve enclosing the maximum area for
a given arc length, it is natural to arrange the collection of variables around a circle. This
also gives a clear indication that all variables are a priori equally important, as there is no
preferred radial direction on a circle. And since correlations typically decay along the lags,
the first a few lags are usually more informative: we arrange them on the larger rings to-
wards the circular boundary. The end result resembles the view looking along the interior

of a tunnel of correlations from the lag-0 correlations into the correlations of later lags.

Besides the general interactive features described above (mouse-over tooltips, mouse-
click refresh of the pivot component, and sort-mode toggles), the tunnel plot has two more
slider controls. Users can increase or decrease the view depth of the tunnel plot with the
maximum lag slider control (labeled [Max Lag|: Figure 5.21 illustrates the behavior. By
decreasing the maximum lag and focusing on the earlier lags, users can perform correla-
tion screenings with smaller tunnel plots, similar to the procedure introduced with the
staff plots (Figure 5.9). We have also included the minimum correlation slider control (la-
beled [Min Corr], see Figure 5.22 for its behavior) that allows users to place a minimum
correlation threshold on the plot. This removes unwanted cells representing insignificant
correlations from the plot and declutters the plot for faster correlation screenings. Again,

since correlations typically decay along the lags, later lags usually become unnecessary for
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higher minimum correlation thresholds: the tunnel plot automatically decreases the view
depth as users increase the minimum correlation threshold sliders, though users can over-

ride the automatic adjustment by manually sliding the maximum lag control again.

The tunnel plot and the staff plot presented in Section 5.2 are two strikingly different
graphic tools for the same purpose. Both are designed to visualize lagged cross-correlations
of high-dimensional time series: the latter encodes the data triad (secondary variable—
lag—correlation) purely geometrically with 3-dimensional positions, while the former, a
2-dimensional plot, sheds the third dimension altogether thanks to the color coding of cor-
relation levels. We intentionally keep the same unemployment rate example, so that users
can compare and pick the tool of their liking. Since we have analyzed the example earlier
in our primer to the staff plot, the more exotic plot, further elaboration is not needed. We

will present a purely technical comparison of these tools in the concluding section.
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Figure 5.20 Two modes of
interactive tunnel plots.
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Figure 5.21 Adjusting
tunnel plot view depth.
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Figure 5.22 Adjusting

tunnel plot correlation
threshold.
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5.4.2 ImPULSE RESPONSE ProT

Having offered a wide array of descriptive graphic tools for high-dimensional time series,
we now present a useful plot for model checking, namely the interactive impulse response
plot, see Figure 5.23(a) and 5.24(a). With the code base developed for previous plots,
the impulse response plot comes for free, since presentation-wise it is simply a stacked
correlation plot transposed, cf., Figure 5.19, even though the color gradient now encodes
different information. To avoid possible confusions, we now adopt a different color scale:
this is also suited because unlike correlations, impulse response functions are not bounded

between -1 and 1.

Since our task is to visualize impulse response functions, we assume readers have already
built a plausible multivariate time series model; performed basic model checking and re-
finement; and obtained the impulse response functions as data frames to some given inno-
vations. To continue our example of the U.S. unemployment rates, we first build a VAR(4)
model with the VAR function in the MTS package for R. We perform simple model refine-
ment and simplification with its refVAR function and model checking with the MTSdiag
function. Subsequently, we obtain the impulse response functions with the vARirf func-
tion with orthogonal unit innovations. Readers can refer to standard textbooks on time

series modeling, e.g., Tsay (2013) and Tsay (2014), for details.

As before, users can obtain detailed information for each cell by triggering mouse-over
event. However, since the color scale is no longer canonical and changes from case to case,
users cannot be reasonably expected to read the new gradient with proficiency. To help
them processing the diverse shapes in impulse responses, we also automatically present a

small line plot at the bottom panel, triggered by the same mouse-over event, see Figure
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5.23(b) and 5.24(b), in addition to the tooltips displayed above the mouse cursor. Similarly,
users can change the innovation by clicking any colored cell on the plot: this changes
the innovation to a unit shock in the variable of that row. We also add subtle transition
animations as visual feedbacks to different types of mouse events, in order to improve

user experience and direct users’ attention to the elements updated. In addition to the

standard interactive features of the suite, users can also toggle between and

|Accumulated]|responses, provided they have obtained these data frames separately from

a third-party tool, for example, the VARirf function in the MTS package for R.

Now that we have presented a suite of interactive graphic tools for both data exploration
and model checking, we could juxtapose them and compare how the impulse response
functions predicted by a time series model fare against the correlation structures observed
in the data. In fact, since all plots are rendered as individual DOM nodes in the same
client browser using the identical JavaScript libraries, code savvy researchers can interact
with multiple plots at runtime and develop more sophisticated graphic tools by chaining

these basic plots. Figures 5.25 and 5.26 provide a simple example.
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Figure 5.23 Interactive
impulse response plot:
transient mode.
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Figure 5.24 Interactive
impulse response plot: ac-
cumulative mode.

Alaska % -
Ala.
Ark.
Ariz.

Calif.
Colo.
Conn. -
D.C.
Del. -
Fla. o
Ga.
Hawaii

=

(a)

(2]
1 T Y T T N Y T T T Oy A |

Alaska =~ Orthogonal Innovation

(b)

Accumulated

Note. (a) Heat map of impulse responses to orthogonal innovation in Alaska, displaying

after left

mouse click on Alaska row; and (b) line plot of New Hampshire to innovation

in Alaska, displaying on mouse over N.H. row. Users can switch on the transient response
mode by clicking the blue icon displayed.

117


Alaska
N.H.

5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

Figure 5.25 Examples of
different impulse response
plots.
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Figure 5.26 Examples of
different tunnel plots for
comparison.
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5.5. TECHNICAL NOTE

The 3-dimensional dynamic staff and orbit plots are implemented in R using the rgl pack-
age (Adler et al., 2018, 3D Visualization Using OpenGL). To improve readability of the
source code, we further use the findPeaks and findvalleys functions in the quantmod
package (Ryan and Ulrich, 2018, Quantitative Financial Modeling Framework) to obtain
local extrema. Scenes of the plots are then exported to the HTML and JavaScript format
using WebGL (Web Graphics Library), a JavaScript API for rendering interactive 2- and
3-dimensional graphics within compatible web browsers without the need for additional
plug-ins, for post processing. Since the Open Graphics Library (OpenGL) was designed
more than a quarter century ago to interact with a graphics processing unit (GPU) for
hardware-accelerated rendering and R is not suited for high-performance GPU computing,
the rendering process implemented is very slow (20min per frame) on a consumer-grade
computer. (In June 2018, Apple deprecated OpenGL APIs on all of their platforms in favor
of Metal 2, its own low-level APIs for near-direct access to the GPU.) To circumvent the
performance problem, we export all rendered frames as PNGs (Portable Network Graphics)
and manipulate these processed images with jQuery, a standard JavaScript library designed
to simplify the client-side scripting. Performance-conscious researchers can optimize these
plots for specific applications and, without relying on proprietary libraries, implement
these 3-dimensional plots with basic JavaScript functions or three. js, a JavaScript library
for creating and displaying animated 3-dimensional computer graphics in a web browser
with WebGL. This solves the performance problem. However, since all graphic objects are
hiding behind a rasterized canvas DOM using WebGL, limited interactive features can be

convincing implemented.
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5.5 Technical Note

In order bypass current technological limitations on developing general-purpose 3-
dimensional statistical graphic tools, the tunnel plot and the impulse response plot take a
completely different approach. To avoid the performance bottleneck of R, we process all sta-
tistical computing in R first, for example through the MTs package (Tsay, 2015, All-Purpose
Toolkit for Analyzing Multivariate Time Series and Estimating Multivariate Volatility Mod-
els), and export the correlations and impulse response functions as data frames. This can
be easily done in R with the as.data.frame and the write.csv functions. We render the
plots procedurally in the web browser as SVGs (Scalable Vector Graphics), a XMI-based
plain text format for 2-dimensional vector images, with D3. js (Data-Driven Documents),
a JavaScript library for producing dynamic and interactive visualizations in web browsers.

As before, we use jauery to code additional interactive functionalities.

Supplementary materials to the manuscript, including all source code and live demon-
strations of the plots introduced, are available through the online archive of the disserta-
tion project at home.uchicago.edu/dwood/thesis. We have packaged the source code for
each plot as a standalone JavaScript library. Readers can also find further documentation
on how to generate these plots from their own data sets by downloading the source code
or through the web interface provided. All source code are provided “as is” and licensed

under the MIT License.
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