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ABSTRACT

Rao (1945) pioneered the use of differential geometry in statistics by treating the Fisher

information as a Riemannian metric. Its theoretical decedents, information geometers,

Amari (1968), Costa et al. (2015), and Chen (2016), through explicit calculations, demon-

strated the induced statistical manifolds have hyperbolic space forms. This manuscript

opens an alternative line of geometric research and calls attention to the ubiquitous phe-

nomena of implied spherical space forms in statistics, which act as benchmark mani-

folds for positive curvature bounds. By developing novel algebraico-topological techniques

suitable to handle these manifolds intrinsically, it introduces significant improvements

to two prominent, seemingly unrelated, statistical work: (a) For Andrews and Mikusheva

(2016a,b), it provides a radically simplified proof and a succinct new theorem on the dis-

tance bound between a random vector and a manifold with a curvature bound; (b) For

Huang et al. (1996); Kizhner et al. (2005), it offers rigorous definitions of related concepts

and a new fundamental theory that allows smooth transforms between the Hilbert-Huang

transform and the Fourier transform of a time series. Through deep engagement with con-

crete statistical applications, it offers timely remarks about the methodological limitations

of information geometry. In lieu of a grand synthesis unattainable at present, as empirical

xi



ABSTRACT

patches to the methodological wounds inflicted, it offers a suite of new interactive graphi-

cal tools based on the foregoing geometric discussions, in particular, the link between the

spherical geometry and correlations, for the exploration of dynamic harmonic structures

in high-dimensional time series.

KEYWORDS: Fisher information, information geometry, differential geometry, data visu-

alization, financial econometrics, multivariate time series

SUBJECT CATEGORY: Economics (0501), Statistics (0463)
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PART I

THEORETICAL LIMITATIONS

1



«La mathématique est l’art de donner le même nom à des choses

différentes.1»

— Henri Poincaré, Science et Méthode (1908)

1 “Mathematics is the art of giving the same name to different things.” G.B. Halsted’s trans-
lation.

2



CHAPTER 1

MOTIVATION

The Fisher information was a Riemannian metric before it became the celebrated matrix

prescribing the lower bound on the variance of any unbiased estimator: At 25, still a student

to Fisher who had already published theMathematician Foundations of Theoretical Statistics

23 years earlier, Rao (1945, 1997 reprint) was immediately canonized; its pioneering use of

the differential geometric method, however, is largely ignored. Though differential geome-

try has inevitably prevailed in other branches of pure mathematics and theoretical physics

that need to deal with nonlinear objects, more than seven decades after Rao (1945), it is

still not a lingua franca in statistics—for good reasons. Information geometers blame it on

the inherent difficulty of themathematics (Amari, 2016), echoingHilbert’s declaration that

“physics is becoming too difficult for the physicists.”1 This is rather presumptuous, tinged

with condescension: unlike what it has contributed for physics, differential geometry (and

by that token modern mathematics in general) hasn’t proven its value in statistics. Indeed,

the Fisher information, as a Riemannian metric, brings with it the whole Riemannian ge-

ometric model which consists of a dazzling array of interactive objects, manifolds, spaces,

1 The quote itself is in dispute but another documented quote from Hilbert shares the
same sentiment: “Every kind of science, if it has only reached a certain degree of maturity,
automatically becomes a part of mathematics. (Ewald, 2007)”

3



1 MOTIVATION

bundles, connections, forms, and more (Section 4). Their interactions, though meticu-

lously developed and elegantly stated, are nevertheless not a statistical theory per se: “A

theory has only the alternative of being right or wrong. A model has a third possibility: it

may be right, but irrelevant (Manfred, 1973).”

Any interdisciplinary researcher makes this risky proposal vis-à-vis relevance: he must

brazenly burden his colleagues with outlandish constructions, with nothing but an empty

promise that all undue discomfort and efforts would pay off; this in turn builds up the

expectation that is hard to fulfill because of the very nascent nature of the work. The

self-defeating proposition dooms many a researcher in search of a grand unified theory,

as evidenced by the deep and ever growing schism between statistics and differential ge-

ometry. An outcast of his own volition, he, in spite of the most genuine intentions, in-

evitably succumbs to the desire for relevance and regresses to a stale state of appeasement:

as a rarefied geometer in residence, slowly drifting away to an ever more distant orbit; or

worse still, as a mangler who spins mathematical concepts for theoretical expediency. “The

doer alone learneth:” it is high time to take out these intricate mathematical artifacts, still

mint, from their sophisticated contextual frames, and use these power tools strictly for

utilitarian purposes. “Immer mit den einfachsten Beispielen anfangen!”2 Following Hilbert’s

advice, I will present two modest but cogent examples where differential geometry (and

its algebraico-topological extensions) elucidates statistical and econometric practices, as

a prolegomenon to a more unified mathematical-statistical theory imagined by Hilbert,

information geometers, and mathematical statisticians (Čencov, 1978).

2 Another Hilbert quote, popularized in German by Artin’s Algebra, which translates to:
“Always start with the simplest examples.”

4



1 MOTIVATION

Since differential geometry is the study of manifolds, the simplest examples are space

forms, which are manifolds with constant sectional curvatures K (Figure 1.1). Information

geometers traditionally focus on the hyperbolic spaces (Hn, K < 0). Through explicit calcu-

lations, Amari (1968), Costa et al. (2015), and Chen (2016) have exhibited that the man-

ifolds implied by the Fisher information—these are exactly the manifolds Rao imagined,

now rebranded as the statistical manifolds—of common distributions (normal, Cauchy,

and t-distributions) all have constant negative sectional curvatures. Since analytical sta-

tistical practices tacitly take place in the Euclidean spaces (Rn) with vanishing curvatures

(K = 0), we here provide examples of the remaining third, the spherical space forms (Sn)

which have constant positive curvatures (K > 0).

This is not to reinvent wheels: indeed, as a most elementary geometric form, spheres

are commonplace in statistics, especially in empirical disciplines like geophysics statistics.3

Our focus is methodological; the thematic focus of spherical spaces, albeit deliberate, is

purely instrumental. In analytical statistics, a geometric object, such as a sphere, plays these

two, not mutually exclusive, roles—(a) geometric: it can be a real geometric representation

of the physical phenomenon (e.g., the Earth in geodetic statistics); or (b) statistical: it can

be used to place parametric restrictions on variables to facilitate the estimation process

3 Familiarity doesn’t imply understanding. Indeed, the Cartan–Hadamard theorem shows
that the universal covering space of a connected complete Riemannian manifold of non-
positive sectional curvature is diffeomorphic to Rn. But little can be said about mani-
folds of non-negative sectional curvature. Even the 3-dimensional case has puzzled mathe-
maticians for nearly a century. Poincaré conjecture, which states “every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere,” widely known since the start of dif-
ferential geometry at the beginning of the 20th century, was not proven until Perelman’s
singular efforts in 2002–2003. He does so by first providing an astonishingly concise proof
of a known theorem that reduces the study of a complete manifold of non-negative sec-
tional curvature to that of the normal bundle of a compact manifold, so called the “soul”
of the manifold.

5



1 MOTIVATION

(e.g., a vector with a fixed norm in all dimensions). In our examples, the spherical space

forms are a bridge object between geometry and statistics: they act as neither the static

background spaces on which parameters and observations are grounded (as in the first ex-

ample about the curvature bound) nor useful functional forms through which extra degrees

of freedom can be trimmed (as in the second example about Hilbert-Huang Transform).

Instead, they are random geometric objects accompanying each set of observations, encod-

ing and decomposing their nonlinearities: for this reason, we here call these parastatistical

geometric objects, or for short, “co-objects” for random variables. This crucial distinction,

though seemingly superficial and even cryptic at this point, will be made clear through the

concrete examples: it is precisely their hybrid geometric-statistical nature that resists full

analytic description and affords deep connections to algebraic topology, whose raison d’être

after all is to keep track of geometric invariance, independent of coordinate computations.

I now refrain from commenting further on the methodological significance of uncovering

and analyzing parastatistical spherical spaces, or cospheres, through algebraic topology

until explicitly demonstrating its power in these two concrete statistical examples.

This paper is organized as follows. The two examples, the curvature cosphere theorem

and the IMF decomposition theorem, will be presented sequentially (Sections 2 and 3)

as mostly self-contained case studies, with an eye to showcase the prevalence of paras-

tatistical spherical space forms in statistics, often in disguised forms, and how modern

algebraico-topological methods fare comparing to the existing analytical method. Each

example starts with (1) a brief introduction to propel the discussion; continues with (2)

necessary mathematical groundwork before formally presenting its main findings in the

form of new theorems; and ends with (3) a short recapitulation highlighting how these new

results contribute to the community research efforts. The HHT discussion, since it’s about

6



1 MOTIVATION

an empirical algorithm, includes an additional section offering further comments on the

empirical implications of the new findings (Section 3.4). We end the paper with general

remarks about the contextual efforts reintroducing geometry to statistics, in particular the

paper’s relation to the ongoing project of information geometry (Section 4). Section 4.1

provides a brief literature review about landmark papers in the area. Section 4.2 contains

definitions of relevant key concepts in differential geometry.

Figure 1.1 Space forms:
manifolds with constant
sectional curvatures.

(a) (b) (c)

K = 1, Sn K = 0, Rn K = –1, Hn

Spherical geometry Euclidean geometry Hyperbolic geometry
(This paper) (Classical statistics) (Information geometry)

Note. Riemannian manifolds with constant sectional curvature are called space forms.
All other connected complete constant curvature manifolds are quotients of those up to
isometry. All marked lines are geodesics, i.e., straight lines with respect to their respective
geometry. Local charts shown.

7



CHAPTER 2

CURVATURE COSPHERE THEOREM

In the first example, Andrews and Mikusheva (2016a,b) derived an upper bound on the

distance of a random variable to a known manifold. Spherical spaces naturally emerge due

to the curvature bound placed on the manifold. The authors take an analytic approach and

attempt to fully describe all objects in the coordinates of the ambient space. The laborious

process, its manifested rigor notwithstanding, relies on a daunting display of ad-hoc set

constructions and optimization problems, in addition to a structural assumption presup-

posing certain properties of the coordinate system, thus acknowledging the capability limit

of their coordinated approach. This is precisely the premise of differential geometry: that

a global coordinate system is not always tractable and structures and techniques must be

developed to handle charts that only exist locally. This paper takes this modern approach.

Instead of pinning down all points in the ambient vector space, geometric objects are con-

structed hierarchically in a coordinate-free (the so-called intrinsic) manner. In lieu of an

uncountable set of auxiliary spherical spaces in the original paper, a single cosphere with

desired properties, freed from the ensnarement of the global coordinates, is exposed for

each observation. The novel change of perspective, along with two geometric lemmas for-

mally establishing the symmetries of the cospheres and the coordinates enveloping them,

8
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yields an incisive proof without relying on any assumption about coordinates and an ele-

gantly stated new theorem about the distance bound (Theorem 4).

2.1. BACKGROUND

Often credited as the first modern geometer-statistician, Mahalanobis (1936) defines the

measure of distance of an observation x = (x1, x2, . . . , xN)′ of a multivariate normal distri-

bution with mean µ and covariance matrix Σ,

ρ2M = (x – µ)′Σ–1(x – µ),

now known as the Mahalanobis distance. In econometric, albeit rarely taken in strictly

geometric terms, it’s often used, to test hypotheses with nuisance parameters for example.

Specifically, let θ̂ be a p-dimensional reduce form estimator with a known (or estimable)

covariance matrix Σ and an unknown mean θ0. We are interested in testing if the model

is correctly specified via the restriction function g(θ) = 0 (or equivalently, via the link

function θ(β), where β is a p-dimensional unknown parameter). The asymptotic hypothesis

test of the restriction is often based on the minimum Mahalanobis distance from the true

parameter θ0:

min
g(θ)=0

(θ̂ – θ0)′Σ–1(θ̂ – θ0).

Since the nonlinear constraint g(θ) : Rk → Rk–p is defined in the full parameter space

and has a p-dimensional kernel containing the true value θ0, Andrews and Mikusheva

(2016a,b, hereafter, AM) treats the kernel of the map as a p-dimensional manifold

9



2 CURVATURE COSPHERE THEOREM

S = {x : x = Σ–1/2(θ – θ0), g(θ) = 0}

and converts the functional restriction to its geometric root, i.e., the minimum distance

between a normalized random vector ξ = Σ–1/2(θ̂ – θ0) ∼ N(0, Ik) and the manifold S:

ρ2(ξ, S) B min
x∈S

(ξ – x)′(ξ – x).

Hypothesizing a curvature bound on the manifold, AM utilizes differential-geometric

methods and offers a remarkable theorem relating the geometric property of a manifold to

the limiting distribution of an econometric statistic. The theorem reduces the bound on

the minimum distance from

ρ2(ξ, S) = min
x∈S

(ξ – x)′(ξ – x) ≤ (ξ – 0)′(ξ – 0) ∼ χ2k (1)

prescribed by the predominant “projection method,” e.g., Dufour and Jasiak (2001) and

Dufour and Taamouti (2005), to a tighter χ2p distribution, thereby presenting a new test

that is “always more powerful than those based on the projection method.”

2.1.1 AM’S THEOREM

Since various novel constructions are defined in AM’s original theorem, for convenience, I

am keeping their notations and quoting their theorem in full, with minor adjustments for

consistency.

10



2.1 Background

THEOREM 1 (Andrews andMikusheva). Let S be a regular p-dimensional manifold
in Rk passing through zero. Assume that the tangent space T0(S) is spanned by the
first p basis vectors. Assume that for some constant C > 0, we have κq(S) ≤ 1

C for all
points q ∈ SC.1

Then:

a. Manifold Sc lies insides the set M ∪DC, where

M B {∥x(1)∥2 + (C – ∥x(2)∥)2 ≥ C2}.

1 Before stating the theorem, the authors defined earlier that each vector x ∈ Rk has the
coordinates (x(1), x(2)) where x(1) = (x1, x2, . . . , xp)∈ Rp contains the first p coordinates
and x(2) = (xp+1, xp+2 . . . xk) ∈ Rk–p contains the last k–p. They also restrict their attention
to “points on the manifold [S] that lie inside a (large) finite cylinder”

Dc = {x = (x(1), x(2)) : ∥x(1)∥ ≤ C, ∥x(2)∥ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk–p} ⊂ Rk.

and define SC to be “the intersection S ∩ DC if it is connected or the connected parts of
S∩DC that passes through zero (i.e., the part s of S∩DC which can be reached by continuous
paths lying in S ∩DC which pass through zero) otherwise.”

Figure 2.1 Basic setup of
AM’s theorem.

S

Rk–p

DC

C

C

0

T0\S = Rp

Rk

SC

Note. For illustrative purpose, S here is a closed 2-manifold with everywhere positive sec-
tional curvature; T0S is a tangent space at point “0”, a 2-dimensional vector space; DC is a
cylinder of radius C. Sc is the shaded area on the manifold.
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b. If [for any y(1) in Rp with ∥y(1)∥ ≤ C, there exists a point x ∈ SC such that
x(1) = y(1)], then, for any point ξ ∈ Rk, we have almost surely [for brevity,
denoted hereafter by “a.s.”].

ρ(ξ, S) ≤ max
u∈Rp–k, ∥u∥=1

ρ(ξ,Nu), where

Nu B
{
x ∈ Rk, x(1) ∈ Rp, z ∈ R :

x = (x(1), zu), ∥x(1)∥2 + ∥C – z∥2 = C2

}
.

c.
max

u∈Rp–k, ∥u∥=1
ρ(ξ,Nu)

a.s.
=== ρ(ξ,Nũ), where ũ B ξ(2)/∥ξ(2)∥.

d. If ξ ∼ N(0, Ik), we have for all x, y:

Pr{ max
u∈Rp–k, ∥u∥=1

ρ(ξ,Nu) ≤ x, ∥ξ∥ ≤ y} = Pr{ρ22(η,N
C
2) ≤ x, ∥η∥ ≤ y},

where the coordinates of the two-dimensional random vector

η B (
√
χ2p,

√
χ2k–p) ∈ R2

are independently distributed,

NC
2 B

{
(z1, z2) ∈ R2 : z21 + (C+ z2)2 = C2

}
[] and ρ2 is [the] Euclidean distance.

2.1.2 STRATEGY OF AM’S PROOF

AM’s theorem relies on a series of inequalities to refine the existing bound. It accomplishes

this by a few ad hoc geometric constructions: DC is a cylinder with radius C; SC is its con-

nected intersection with the manifold; M is the region outside of a p-sphere of radius C,

with respect to the ambient space. Nu is a collection of p-spheres, indexed but a unit po-

sition vector u ∈ Rp–k on the p-sphere. Nũ is the p-sphere that the random vector ξ passes

through. NC
2 is a 1-sphere with radius 1 centered at (0, –C).

12
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Even though the theorem is geometric, its proof is not strictly so. Proof for (a) relies on

its Lemma 1, which “projects” SC to its tangent space and defines

Mv = {x : ⟨ x, v ⟩2 + (C – ∥x – ⟨ x, v ⟩)v∥)2 ≥ C2}

to construct M as the union of all such sets:

M = ∪v∈T0S, ∥v∥=1Mv.

Proof for (b) considers the k – p-dimensional linear space Rr = {x ∈ Rk : x(1) = τ(1)} for

point τ ∈ Nũ; reduces

Rr ∩ M ∩Dc = {x = (τ1, x(2)) ∈ DC : ∥τ(1)∥2 + (C – ∥x(2)∥)2 ≥ C2} to

= {x = (τ1, x(2)) : x(2)∥ ≤ C –
√
C2 – ∥τ(1)∥2};

and then solves the maximization problem “ρ2(ξ, x) = ∥ξ(1) – τ(1)∥2 + ∥ξ(2) – x(2)∥2 → max

[sic.] s.t. x ∈ Rr ∩ M ∩Dc” to obtain x = τ. Statements 1(c) and (d) are straightforward to

prove, once (a) and (b) are established. For (c), the proof defines

f(u) = min
x(1)∈Rp, z∈R+,

∥x(1)∥2+(c–z)2=C2

∥ξ(1) – x(1)∥2 + ∥ξ(2) – zu∥2,

and differentiation with respect to u together with the “envelope theorem” yields ξ(2) = zu.

Statement (d) gives a 2-dimensional reduction of (c) through the definition of η.

13



2 CURVATURE COSPHERE THEOREM

We can therefore summarize their strategy to establish the bound on ρ2(ξ, S) through

the following diagram (Figure 2.2). Our job now is to establish a direct link from ρ2(ξ, S)

to ρ22(η,N
C
c ) (indicated by the wavey arrow).

2.1.3 CLARIFICATIONS ABOUT CURVATURES

Let’s fix the terminology about curvature. There are many different and useful ways to

describe the curvature a Riemannianmanifold. We useR to denote the CURVATURE TENSOR,

which in essence measures the noncommutativity of the covariant derivative,

R(u, v)w = ∇u∇vw – ∇v∇uw – ∇[u,v]w,

where ∇u is the Levi-Civita connection (covariant differentiation along u) and [·, ·] is the

Lie bracket of vector fields

[X,Y]( f ) = X(Y(f)) – Y(X(f)) for all f ∈ C∞(M).

Figure 2.2 Diagram of
AM’s strategy of prove. max f(u) ψC

ρ2(ξ, S) max
u∈Rp–k, ∥u∥=1

ρ2(ξ,Nu) ρ2(ξ,Nũ)

ρ22(η,N
C
2)

B B

a.s.
1(b)†

a.s.
1(c)

a.s. 1(d) a.s.

Note. The first step (marked by †) further relies on this lemma (their Lemma 1): “Assume
g(0) = 0. For some C > 0, assume that ∂

∂x′g(x) is full rank for all x∈ SC. If the maximal
curvature over SC is not larger than 1/C, then the projection of SC on the tangent space
T0(SC) covers the ball of radius C centered at zero.”
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Given two linearly independent tangent vectors at the same point, u and v, the SECTIONAL

CURVATURE curvature K is defined to be:

K(u, v) =
⟨R(u, v)v,u⟩

⟨u,u⟩⟨v, v⟩ – ⟨u, v⟩2.

where ⟨ ·, · ⟩ is the inner product on the tangent space induced by the metric tensor g intro-

duced earlier. In particular, if u and v are orthonormal vectors, we have the simplification

K(u, v) = ⟨R(u, v)v,u⟩.

A Riemannian manifold is a space form if its sectional curvature is equal to a constant K.

The Riemann tensor of a space form is given by

Rabcd = K(gacgdb – gadgcb),

The GAUSSIAN CURVATURE, K, is the sectional curvature of a surface, used in the context

of the Theorema Egregium which establishes that the measure of the curvature of 2-surface

is intrinsic—the Gaussian curvature of a surface does not change if one bends the surface

without stretching it. It is the product of PRINCIPAL CURVATURES, often denoted by κ or k,

which are curvatures in two orthogonal directions, known as principal directions, given by

the second fundamental form.

AM proposes the following definition of the (maximal) curvature at a point q on the

manifold:

15



2 CURVATURE COSPHERE THEOREM

κq(S) = sup
X∈Tq(S),
γ̇(0)=X

κq(γ, S) = sup
X∈Tq(S),
γ̇(0)=X

∥(γ̈(0))⊥∥
∥γ̇(0)∥ , (2)

where γ : (ε, ε) → S is a curve on S passing through q at γ(0) and (W)⊥ is the projection of

W onto the space orthogonal to Tq(S) and in adddition suggesting the following scheme to

calculate curvature in practice:

κq(S) = sup
u=(u1,...,up)∈Rp,
∥∑p

i=1
uiuj∥=1








p∑

i, j=1

uiujV⊥
ij







 = sup
w=(w1,...,wp)∈Rp




∑p
i=1, j wiwjV⊥

ij







∑p
i=1

wivi



 . (3)

where Vij is the second derivative ∂2yi yjx(y
∗)—this is the supremum of sectional curvatures

in all directions ui,uj, near a point u. Since the definition of curvature is unsigned, we can

assume the sectional curvature is bounded from both sides: 0 < |K| < 1
C2 .

2.2. MAIN RESULTS

As demonstrated in the previous section, AM’s four-pronged theorem relies onmany ad-hoc

constructions that do not always have easy geometric interpretations. Their original proof,

though rigorous, is rather cumbersome: it relies on even more intermediary constructions

of sets and side optimization problems. I now present a drastically simplified proof and a

succinctly stated theorem introducing the novel idea of cospheres, with the helping hand

from algebraic topology. Section 2.2.1 develops two theoretical results to deal with high

dimensional objects, thereby warranting the seemingly audacious step in the main proof

that reduces all irrelevant dimensions. Section 2.2.2 presents the new proof and an im-
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proved theorem. Readers can start directly with the proof and refer to Section 2.2.1 for

further explanations on the geometry of hypersphere and factor bundles.

2.2.1 TWO GEOMETRIC LEMMAS

LEMMA 2 (Spherical shell). Let S be a regular p-manifold (p ≥ 2) embedded in the

ambient vector space Rk, where k ≥ p + 1. Assume S has the sectional curvature

|K| ≤ 1
C2 , C > 0 in each section at each point s ∈ S. Then there exists a p-sphere,

such that:

a. Sp is centered at c ∈ Rk, with a radius r = C;

Figure 2.3 Principal cur-
vature comparison.

κ1

κ2
κ2́

Note. Gauss curvatureK of a surface at a point is the product of the principal curvatures, κ1
and κ2. It is an intrinsic measure of curvature, not depending on the geodesics chosen. We
can make curvature comparisons of different surfaces at a point by aligning them together
so that one principal curvature is identified κ1 = κ′1.

17



2 CURVATURE COSPHERE THEOREM

b. Sp intersects with S at the point 0 ∈ Sp; and

c. For any point on s ∈ S, we have |s – c| ≥ r.

Proof. Let’s first show a n-sphere Sn has constant sectional curvature K = 1
r2 at each

point: one can deduce this from the typological fact that Sn = ×nS. Consider Sn in

a Rn+1 Euclidean space, so that the spherical center coincides with 0. For each point

p ∈ Sn, represented by the position vector v(x1, . . . , xn+1) normal to the tangent space,

we can form an orthonormal basis {ei}
j
i=1

at the tangent space TpSn such that ei = λideiv,

where λi is a scaling factor. From the definition of sectional curvature earlier or using the

more specialized tangential curvature equation, see e.g., Petersen (2006), we then have

KRn+1(ei, ej) = KSn(ei, ej) – (λiλj)–1, with respect to their respective metrics gRn+1 and gSn .

Using spherical coordinates on the n-sphere, we have

gSn = dr2 + r2
n∑

i=1

dφ2
i and gRn+1 = dr2 + gSn .

This therefore shows λi = λj = r and KSn(ei, ej) = 1
r2 , since the Euclidean space is flat and

has 0 sectional curvature.

We now use the method to prove the main claim of the lemma. For each point q ∈ S

and any section given by the orthonormal vectors in its tangent space, u, v ∈ TqS, there

exists a circle S1 in the same plane E as u, intersecting S at point q. Under the curvature

hypothesis of the lemma, K(u, v) = ⟨R(u, v)v,u⟩ ≤ 1
C2 . Elementary geometry on the plane

E shows: for any S1 with a radius r = C, we have for each point s on the intersection of S

with E s ∈ S |E, we have |s – c| ≥ r = C. The center c of S1 is said to be on the curvature

center side of S, if K ≥ 0.
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Since it’s true for each section and since the manifold is finite-dimensional, induction

shows one can at least find an open neighborhood of a point q on the S, such that the

p-sphere touches the manifold at q with its center on the curvature center side of S, i.e,

for all s ∈ U ⊂ S, |s – c| ≥ r,

without loss of generality, call this point 0. Suppose the opposite: there exists a point s′

on the manifold S such that |s′ – c| < r. Let γ be a geodesic connecting 0 to s′. Since the

manifold is regular, γ is compact (both in S and the ambient vector field), there is a finite

set of open covers for γ: each with the desired property. In particular, we have such an open

cover for s, Us. Using the manifold hypothesis, there are local charts (ψ,V0) and (φ,Vs) at

points 0 and s respective. Therefore, for all points s ∈ Vs ∩ Us, we have |s – c| ≥ r. But

s′ ∈ Vs ∩Us: a contradiction.

Remark. This is a purely geometric fact. Since the curvature of an n-sphere is reciprocal

to its radius squared, the lemma formally establishes the intuition that a mildly deformed

spherical object can still contain a smaller sphere with the same dimension, see Figure ??.

One can readily generalize the result, but let’s keep our focus on the econometric problem

at hand.

LEMMA 3 (Split of vectors bundles). Let S be a p-manifold embedded in a k ≥ p+1-

dimensional Euclidean space. The fiber-wise quotient vector spaces Rk/TxS form a

factor bundle over S.

Proof. The ambient vector field gives a trivial vector bundle over S, E, that is fiber-wise Rk.

Let π′ : TS → S be the tangent bundle of S and Let π : E → S be the vector bundle
19
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over S. Let f : TS → E be the fiber morphism. Locally we have the trivialization for the

tangent bundle τ′ : TSU → U × Rp and the corresponding trivialization for the vector

bundle τ : EU → U × Rk. Since we have the split, viewed as vector field decomposition,

Rk = Rp ×Rk–p, along with the following commutative diagram:

U ×Rp U ×Rp ×Rk–p

TSU EU

S

τ′

π′

f
τ

π

We have the local exact sequences:

0 −→ π′
f
−→ π and 0 −→ TBU

f
−→ EU

We can take the disjoint union of all factor fibers Ex/TxS to form the factor bundle.

Remark. The proof is constructive and technical but the idea is elementary. Each point

on a manifold comes with a chart ψ : Ui → Rn that reduces it to an Euclidean space.

Higher constructions, like bundles, inherit the chart, through similar trivializations. The

Lemma does not depend on the dimensions and one can replace the tangent bundle of S

with any other vector bundle. Lang (2001) provides more details about vector bundles and

metric bundles. Exact sequence method is ubiquitous in modern mathematics. Here are

two illustrative examples to apply the method to statistics.

EXAMPLE 1. Let θ ∈ Θ be a k-dimensional variable in the full parameter space

Θ; β ∈ B be a p-dimensional explanatory variables; θ : U ⊂ B → Θ be a link
20



2.2 Main Results

function; and g : Θ → A be a restriction function. A parameter restriction is

valid (in the sense that model is corrected specified and could be identified) if

and only if the short sequence

0 B Θ A 0
θ g

(4)

is exact. The following statements are equivalent: Θ/B is irrelevant; the structural

form g(θ) = 0 and the reduce form θ = θ(β) are just identified; Im θ B {θ : θ =

θ(β)} == {θ : g(θ) = 0} C Ker g.

2.2.2 MAIN PROOF AND COSPHERE THEOREM

Proof (Proof to Theorem 1). (a) SC ⊂ M by Lemma 2. SC ⊂ DC by construction.

(b) and (c) If ξ ∈ S, (b) and (c) already true by Lemma 2 and if ξ ∈ T0S, (c) in not defined

since ∥ξ(2)∥ = 0. Let’s now assume ξ < S and ξ < T0S and let p be the projection of ξ on

T0S. Let c be the center of the p-sphere described in Lemma 2 touching S at a fixed point,

“0”. The three distinct points ξ, p, and 0 determines a unique plane E ≃ R2. Since E is

by definition perpendicular to T0S, it contains a curve γ from S connecting 0 and q,2 the

projection of ξ on γ, a circle centered at c on the curvature center side of γ touching it

at 0, and another circle centered at c′ also with radius r and touching γ at 0, such that c,

2 This is true because E = (e, e⊥), by virtue of being perpendicular to T0S, can be made
to have its first coordinate coinciding with the first coordinate of g(x) , after a change of
coordinates, if necessary. Specifically, let φ : Rk → Rk be such a change of coordinates,
which makes the desired change (x1, . . . , xk) 7→ (e, x′2, . . . , x

′
k), seen as a SO(p) rotation

of the tangent space around 0. The curve γ ∈ E ∩ S connecting 0 to q, not necessarily a
geodesic, is the composite map gφ–1i1, where i1 : [0, a] → Rk is the injection into the first
coordinate, while holding all other coordinates at 0.
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0, and c′ are on the same line: this is precisely the basic case for k = 2 and p = 1, with

the exception that the projection of ξ on S, where the minimal distance between ξ and

the manifold is obtained, might be somewhere else not on E. But this is not a concern.

Possibly after switching the names of c and c′, we can assume, without loss of generality,

|ξ– c| ≥ |ξ– c′| and |ξ– c|– r ≥ |ξ–q′|, where q′ is the intersection of ξ– c on γ.3 The direction

of ũ is uniquely given by the direction of –(ξ – c) and we have

3 Though not strictly necessary, Lemma 3 allows us to further explicitly factor out all irrele-
vant (k–2)-dimensions on each fiber, leaving the plane containing the geometric objects of
interest (Figure 2.5). I removed more explicit algebraic constructions here to avoid causing
any possible confusion, as the ambient spaceRk needs to be taken as the manifold (instead
of the manifold S) for the lemma and each fiber is identified by ξ.

Figure 2.4 Nu as a torus
Sp × Sk–p.

u
z

C

x (1)

Note. The collection of p-sphere defined in AM’s theorem, Nu, can be seen as a torus
Sp × Sk–p. Each vector u on the (k – p)-sphere, u ∈ Sk–p, pins down a section containing a
Sp sphere. The new proof presented exploits the fact it’s a product space with the factor
Sp being the relevant one for the distance comparison.
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ρ(ξ, S) ≤ |ξ – q′| ≤ |ξ – c| – r = ρ(ξ,Nũ).

The “almost surely” part is redundant.

(d) This is only dimension counting with the degree of freedom of the χ2 distribution

and geometry of η is true by construction. Decompose Rk = Rp ×Rk–p. Since ξ ∈ N(0, Ik),

each component is therefore an independent variable from standard normal. It’s clear its

norms in each component vector space, |η1|2 =
∑p

i=1
ξ2i and |η2|2 =

∑k
i=p+1 ξ

2
i , follow χ2p

and χ2k–p distributions respectively. By (c), the fixed center of NC
2 gives the desired geometry.

In fact, η can be explicitly written as the η = (ξ – c).

Stripping away all auxiliary constructions in the original theorem yields the following

statement:

THEOREM 4 (Cosphere). Let M be a p-manifold embedded (p ≥ 2) in the ambient

vector spaceRk, where k ≥ p+1. Assume S has the sectional curvature |K| ≤ 1
C2 ,C ≥

0 in each section, at each point s ∈ S.

Fix any point m on the manifold as the point of econometric interest. Let ξ be

a standard normal random vector: ξ ∼ N(m, Ik). There exists a p-sphere, Sp
ξ , with

radius r = C touching M at q, centered at c, such that

ρ2(ξ,M) ≤ ρ2(ξ,Sp
ξ ). (5)

Any such p-sphere Sp
ξ defined above is called a COSPHERE of M for ξ.
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Proof. Almost identical to our new proof for Theorem 1(b) and (c). Suffice to show such

cospheres exist for any ξ, not necessarily uniquely. If ξ ∈ M or ξ ∈ TmM, the statement

is trivial, any sphere in Lemma 2 is a cosphere. Let’s now assume ξ < M and ξ < TmM.

Let p be its projection on TmM. Let c be the center of the p-sphere described in Lemma 2

touching M at a fixed point, m. The three distinct points ξ, p, and 0 determines a unique

plane (Figure 2.5). The plane contains a curve γ from S connectingm and q, the projection

of ξ on γ, a circle centered at c on the curvature center side of γ touching it at m, and

another circle centered at c′ also with radius r and touching γ at m, such that c, m, and

c′ are on the same line: this is precisely the basic case for k = 2 and p = 1. Possibly after

Figure 2.5 Sectional re-
duction of the curvature
bound theorem.

S
c

Rk

c'

q'
v

u

ξ

q

0
p

Note. Since the curvature boundK(u, v) = ⟨R(u, v)v,u⟩ ≤ 1
C2 holds for any orthonormal sec-

tion and by the spherical symmetry of Sp, we can reduce the higher-dimensional problem
to the most basic 1-dimensional scenario along v (relevant curves shown in blue). Lemma
2 fails near the bottom of the manifold because of areas with large curvatures (indicated
by arrows).
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switching the names of c and c′, we can assume, without loss of generality, |ξ–c| ≥ |ξ–c′| and

|ξ–c|–r ≥ |ξ–q′|, where q′ is the intersection of ξ–c on γ. By construction, ρ(ξ,Sp
ξ ) = |ξ–c|–r.

This therefore proves the claim, since ρ(ξ,M), possibly obtained somewhere else on M, is

assumed to be smaller than |ξ – q′| and

ρ(ξ,M) ≤ |ξ – q′| ≤ |ξ – c| – r = ρ(ξ,Sp
ξ ).

The geometry of η follows by constructing the coordinate system dynamically for each ξ.

One can always choose orthonormal basis ofRk for each ξ,
∑k

i=1 e
i
ξ , such that the cospheres

are always centered at

c = –r
p∑

i=1

eiξ + 0
k∑

i=p+1

eiξ .

This gives the center of the cosphere coordinates c = –r1p ⊕ 0k–p = (–r, . . . , –r, 0, . . . , 0),

where we use the short hand 1p and 0k–p to keep track of the dimensions where the center

of cosphere is shifted by –r and unchanged with respect to m. Note this coordinate system

centers the distribution of ξ at 0k, m = 0k. Since the tangent plane separates c and ξ, ξ

always has positive coordinates dynamically in the –r1p dimensions. ρ(ξ,Sp
ξ )|1p = |ξ–c|–r =

ξ + r – r = |ξ| and ρ(ξ,Sp
ξ )|0k–p = |ξ – c| – r = |ξ| – r. Therefore η1 = ρ2(ξ,Sp

ξ )|1p ∼ χ2p and

η2 = ρ2(ξ,Sp
ξ )|0k–p ∼ χ2k–p if the 0k–p dimensions are shifted by –r: this precisely places η on a

circle with the center at (0, –r) and η2 has the χ2k distribution, predicted by the “projection

method.”
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2.3. CONTRIBUTIONS

This paper contributes to the ongoing efforts reintroducing geometry to statistics by bring-

ing significant improvements to an established result. Building on the remarkable work of

Andrews and Mikusheva (2016a,b) which relate a purely geometric concept, sectional cur-

vature, to the limiting distribution of an estimator, this paper drastically simplifies the

process by freeing the geometric objects from the background coordinate system and en-

coding the curvature information on the counterfactual object, cospheres. The idea of a

co-object is worth noting: it is a geometric object accompanying each random observation

and acts as the intermediary between statistics and geometry. The new proof along with the

accompanying cosphere theorem contributes to the existing literature in several significant

ways.

First, it yields a more direct proof. Our approach, focusing on the geometric intrinsics,

provides a new and drastically simplified proof. Since the manifold in question is the ker-

nel of some restriction map on the parameter space g(θ) and θ = (θ1, θ2, . . . , θk) has the

natural coordinates and the curvature is obtained in these coordinates via Equations 2 and

3, AM describes all geometric constructions with this global coordinate system. This clas-

sical analytic approach integrates well with set theory (by describing set intersections with

the coordinates) and optimization theory (through differentiation with respect to these co-

ordinates). However, since geometric objects are obtained through coordinate-based cal-

culations, they tend to be stripped of geometric intuitions and as a result become rather

cumbersome to manipulate.

Second, the resulting new theorem is more elegant and does not rely on additional

assumptions about the coordinate system: one cosphere represents all the curvature in-
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formation needed for the distance bound. In AM’s original theorem, the validity of the

theorem rests on the extra assumption about the power of the background coordinate sys-

tem: “for any y(1) in Rp with ∥y(1)∥ ≤ C, there exists a point x ∈ SC such that x(1) = y(1),”

their Assumption 1. It further comments: “Lemma 1 shows that Assumption 1 holds quite

generally for implicitly defined manifolds.” However, this goes against the fundamental as-

sumption of a manifold: a chart is only supposed to be given locally. There is a well-known

exponentiationmap descending from the tangent space from themanifold exp : TpM → M

that yields local isomorphism between vectors in the tangent space and points on the man-

ifold, a map they are in substance utilizing in proving their Lemma 1 (and we will use in

the next section), but it is only given locally (unless we are assuming in additional the man-

ifold is a Lie group) from U×Rp → U, where U is an open neighborhood on the manifold

containing p. The extra metric bound on the open neighborhood is not warranted.

Third, it fixes minor technical errors in AM’s proof. For example, in AM’s Theorem 1(c)

the vector identifying the desiredmaximizing sphere from their collection of p-dimensional

spheres Nu, ũ, is defined to be ũ = – 1

∥ξ(2)∥
ξ(2). This is invalid if ξ lies in Rp subspace, i.e., ξ

falls in the tangent space T0S with ξ(2) = 0k–p.

Most importantly, I hope to call attention to the existence of implied spherical space

forms in statistics and demonstrate the superiority of the differential geometric methods

in manipulating these objects. I will make explicit these larger points about dealing with

nonlinearity from the intrinsic geometric perspective and the deep connection between

statistics and Riemannian metrics in the concluding remarks, after the presentation of the

next more powerful example. There, algebraic topology lends support to an empirically

effective, yet theoretical groundless statistical practice but at the same time prescribes a

stern limit of what it could achieve.
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CHAPTER 3

HILBERT-HUANG TRANSFORM

In the second example, our goal is to lend theory to a theory-less practice. Statisticians at

the National Aeronautics and Space Administration (NASA), who work with predominantly

geophysical data, through practice found a data transform algorithm (officially termed the

Hilbert-Huang Transform by NASA, or HHT, since Hilbert Transform is often used in

the subsequent analyses) decomposing a time series into several simpler summable parts

(Huang et al., 1996; Kizhner et al., 2005). Each part, called an intrinsic mode function

(IMF), has more regular geometric shapes and is claimed to be easier for scientific inter-

pretations. The algorithm consists of several intuitive geometric steps but these mathe-

matically nonstandard steps lack formal definitions and resist clear-cut characterizations.

This paper answers the call for theoretical clarity initiated by its proponents more than

two decades ago. It establishes a direct link between the algorithm to the Fourier trans-

form (Theorem 7), by demonstrating how each IMF can be smoothly transformed into a

Fourier basis (Lemma 6). As the proof demonstrates, the Fourier transform can be seen

as a canonical curvature decomposition, from an arbitrary square-integrable function into

a series of constant functions on the circle, each identified by its wrapping number. Just

like the first example, accompanying each time series, there is an implied spherical space
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(1-dimensional), a cocircle, where an observation on the time series is compared to a point

on the cocircle indexed by its multiplicity, or the wrapping number of the path between

the point to a base point. Since NASA researchers in practice work with time series of su-

perimposed cyclic functions, the algorithm therefore provides a heuristic way to identify

relevant wrapping numbers.

3.1. BACKGROUND

Dissatisfied with the Fourier Transform and the computational companion, the Fast

Fourier Transform (FFT), due to their strong assumptions about the source data,1 re-

searchers at NASA Goddard Space Flight Center (GSFC), developed and commercialized a

novel data transform algorithm termed officially, the Hilbert-Huang Transform (HHT). All

HHT’s empirical successes only make it more urgent to investigate its mathematical limits.

Huang is forthcoming about the method’s shortcoming: by his own admission, we have no

theory to support the adaptive data analysis methodology (Huang and Pan, 2006). Since

the Hilbert spectral analysis step of the HHT is well understood mathematically, we focus

our attention on the sifting process, which is an empirical procedure to extract temporal

features, represented from the IMFs, from the graph of a time series. This is not a straight-

forward task: since the HHT makes no refutable claims, there is no claim to prove nor test

to run. It’s tempting to dismiss the HHT as statistical tea-leaf reading but it doesn’t offer

help to the task at hand—to elucidate and guide the common practice from a theoretical

point of view.

1 ”[S]uch as linearity, of being stationary, and of satisfying theDirichlet conditions (Kizhner
et al., 2005).”
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3 HILBERT-HUANG TRANSFORM

I present a novel application of an algebraico-topological idea, homotopy, to the set-

ting and an elegant theory to reduce the HHT to the Fourier Transform by homotopically

transforming each IMF to a basis in the Hilbert space. This not only lends a solid theo-

Figure 3.1 An example of
the sifting process.

Step 1. Start from an IMF candidate func-
tion h.

Step 2. Identify the set of local maxima {h}+.
Indicated by triangles.

Step 3. Generate a cubic spline S {h}+ that
sequentially connects the points of {h}+.

Step 4. Repeat Steps 2 and 3 for local min-
ima {h}–.

Step 5.Obtain the mean curve by simple av-
eraging:m(t) = 1

2(S {h}++S {h}–). The can-
didate function h is declared an IMF ifm(t)
is zero.

Step 6. Obtain an update for the IMF can-
didate function h′ by subtracting the mean:
h′(t) = h(t) – m(t). Go to Step 1 or stop if
some chosen stoppage criterion is met.
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retic support to the serendipitous procedure but also provides practical guide as to where

the process might be most useful. It might not seem immediately obvious how the HHT

is at all related to the foregoing econometric discussions of the curvature bound. This is

precisely the point of the paper—that the phenomenon of curvature bounds, in spherical

space forms, arises naturally in many problems, often in disguised forms, due to the funda-

mental nature of the geometric restrictions placed on the parameter space, intentionally or

inadvertently. Same geometric constructions will reappear in this section and I will make

the larger point in the concluding remarks.

The HHT is the two-step process introduced by Huang et al. (1996) and subsequently

popularized by the author and his collaboration for applying the Hilbert transform on the

intrinsic mode functions (IMF), which are obtained recursively through the sifting process

(also known as the empirical mode decomposition method) from a time series of observa-

tions, usually 1-dimensional, up to some stoppage convention. The HHT method trumps

traditional Fourier and wavelet transforms in analyzing spatial-frequency data of mostly

nonlinear and non-stationary2 data where the Fourier transform, notwithstanding the full

backing of mathematical rigor, does not yield satisfactory empirical results, according to its

proponents. Since its introduction, the HHT has been applied to time series in diverse dis-

ciplines from empirical signal-processing fields like imaging processing (Hariharan et al.,

2006) and speech recognition (Huang and Pan, 2006) to more theoretically driven fields

like financial time-series modeling (Huang et al., 2003; Li and Huang, 2014). Various mod-

ifications and extensions, building on the sifting process, have been proposed: the HHT

2 Stationarity, the common terminology used in the HHT literature, means the amplitudes
of the empirical modes implied change over time in this context, in contrast to the basis
of the Fourier transform.
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3 HILBERT-HUANG TRANSFORM

method has continuously generated active research interests (Chen and Feng, 2003; Parey

and Pachori, 2012; Guang et al., 2014).

The sifting procedure is intuitive and easy to illustrate. Figure 3.3 outlines the algorithm

and Figure 3.1 illustrates the process. Readers can refer to Huang et al. (1996) for more

detailed description of each step.

Figure 3.2 Comparison
between Fourier, wavelet,
and HHT analyses.

Fourier Wavelet HHT
Basis fixed, infinite adaptive, finite
Theoretical base mathematical empirical
Linearity yes no
Stationarity yes no
Presentation frequency time-frequency

Note. Adopted from comparison table from Huang and Wu (2008).

Figure 3.3 The sifting al-
gorithm.

h0 ≡ x → h1 → h2 → . . .→ hk–1 → hk ≡ c

a. Start from an IMF candidate function h, e.g., a time series.
b. Identify the set of local maxima {h}+.
c. Generate a cubic spline S {h}+(t) that sequentially connects the points of {h}+.
d. Repeat (2) and (3) for local minima {h}–.
e. Obtain the mean curve by simple averaging: m(t) = 1

2(S {h}+(t) + S {h}–(t)).
f. Declare the candidate function h(t) an IMF c, if m(t) is zero.
g. Obtain an update for the IMF candidate function h′ by subtracting the mean: h′(t) =

h(t) –m(t).
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3.2. MAIN RESULTS

I now present homotopic theory to smoothly retract the HHT to the Fourier transform,

which is the only available convergence theory on the functional space. Section 3.2.1 re-

frames the setting in mathematically and derives a simple identification criterion for the

IMF, crucial for subsequent proofs. Section 3.2.2 introduces the idea of homotopy, com-

monly known in the algebraic topology community and uses it proves a technical lemma

that shows each IMF can be smooth transformed to a unique Fourier basis, identified by

an integer. I do so geometrically and in a self-contained exposition. Section 3.2.3 at last

puts the elements in a deceptively simple theorem that shows the deep connection between

the HHT and the Fourier Transform.

One regularization assumption. For convenience, we can assume f(0) = f(T) = 0 and

#{h}+ = #{h}–. This is not a strong assumption for the time series under investigation.

Since we are interested in obtaining the intrinsic empirical modes, whose amplitudes and

frequencies are driven by the physics of the underlying process, we may trim the end points

(by discarding a few observations) without affecting the sifting process. The empirical ex-

ample in Section 3.4 further justifies the assumption: in practice, the time series interested

is typically long and the low-frequency (comparing to the observations) IMFs generally do

not have any scientific significance.

3.2.1 IMF IDENTIFICATION CRITERION

Huang et al. (1996) defines a smooth function to be an intrinsic mode function (IMF) if it

satisfies the following two conditions:
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3 HILBERT-HUANG TRANSFORM

a. In the whole data set, the number of extrema and the number of zero-crossings must

either be equal or differ at most by one; and

b. At any point, the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero.

This is the standard definition used by the HHT literature but not rigorous enough for

further discussions. Given any smooth function h(t), denote the set of its local maxima

by {h}+; local minima by {h}–, and zero crossings by {h}0. Let {h}±, the set of local extrema,

be the union of {h}+ and {h}–: {h}± = {h}+ ∪ {h}–. Given an ordered set M, a spline SM

of order-n is a smooth function, defined piecewise as polynomials of order n. Given any

smooth function h(t), we may form splines S {h}+ and S {h}– from the sets of function

h(t)’s local maxima {h}+ and its local minima, respectively. Call these splines, the upper

envelope spline and the lower envelope spline, respectively. There is no canonical way to

form splines of a given degree of polynomials. A cubic (i.e., a order-3) spline is commonly

used via the cubic B-spline and the cubic Bézier spline method. Indeed, it remains an open

question of the HHT research to determine the best among these spline methods (Huang

and Shen, 2005). For demonstrating purpose, we use the monotone cubic Hermite spline

according to the method of Fritsch and Carlson, implemented as splinefun in R (Fritsch

and Carlson, 1980).

We can simplify the two conditions of the IMF with the notations presented, which

shows the first condition, though useful as an easier necessary condition to check, is re-

dundant in the definition.
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THEOREM 5 (IMF Identification Criterion). A function h(t)is an IMF if and only

if it has symmetric envelope splines:

|S {h}+| = |S {h}–|.

Proof. This is the second and the only other condition of the definition of an IMF. Given

a smooth function h, the first condition of an IMF can be written as:

|#{h}+ + #{h}– – #{h}0| ≤ 1.

Suffice and easy to show by induction, this inequality holds when S {h}+ = S {h}–.

The extrema counting condition is a necessary condition for the second condition. As

a weaker criterion, it characterizes the basic shape of the envelope splines. Declare func-

tions violating the condition functions with degenerate envelope splines. Given a smooth

function h, the second condition in our notation requires S {h}+ = –S {h}–. This is a

very strong condition: given an upper envelope spline, the lower envelope spline is unique

defined. Call a function conforming to the condition a function with symmetric envelope

splines. One may deduce the non-degenerate envelope condition from the symmetric enve-

lope condition easily for example through induction. Yang and Yang (2009) makes a similar

point.
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3 HILBERT-HUANG TRANSFORM

3.2.2 HOMOTOPY

The condition specified in Theorem 5 is rather stringent. Since the function under consid-

eration is assumed to be arbitrary, there is no a priori theoretical assurance of the needed

symmetry which requires its upper envelope spline to match its lower envelope spline. In

order to obtain an IMF for a function, a heuristic stoppage condition must be employed

to declare the envelope splines are symmetric “enough”; the hypothesized condition of the

definition is met; and an IMF is produced. In each failed iteration where no IMF is pro-

duced, an asymmetric part of the function—that is the mean of the upper and the lower

envelopes—is subtracted from the function and moved to its residue. Since all IMFs have

Figure 3.4 Convergence
patterns of the sifting pro-
cess.

Note. Blue lines converging inwards are enveloping splines generated in the sifting process
(see Theorem 5). The black line with greater amplitudes is the original time series. The
IMF identified, by virtue of having symmetric envelops, is the inner most black line.
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symmetric upper and lower envelopes, the sifting process can be though as a method to

“symmetrify” a function, by discarding asymmetric parts iteration by iteration until the

resulting envelopes are symmetric enough according to the stoppage condition. Figure 3.4

illustrates a typical run of the sifting process. Blue curves are the envelope splines wrap-

ping the function. The sifting process warps the function, until it is sufficiently symmetric,

shown as the blue curve contained in the clusters of symmetric envelope splines. In geom-

etry, the continuous warping process is called a homotopy.

DEFINITION 1. A HOMOTOPY between two continuous functions f and g from

a topological space X to a topological space Y is defined to be a continuous

function H : X × [0, 1] → Y from the product of the space X with the unit

interval [0, 1] to Y such that, if x ∈ X then H(x, 0) = f (x) and H(x, 1) = g(x).

Continuous functions f and g are said to be HOMOTOPIC if and only if there

is a homotopy H taking f to g.

Figure 3.5 The letter
forms A and O are homo-
topic, but not with B.

Note. Contracting the outer edge and expanding the inner edge gives a homotopy from A
to O. But there is no homotopy from A to B.
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Figure 3.5 further illustrates the idea. It’s clear that homotopy is a equivalence class. Let

f , g : [0, 1] → X be two paths in X. We can compose the paths by letting transverses first f

and then g. Consider in particular a function f starting and ending at the same point x: its

path is a loop and x is the basepoint. The set of all homotopy [ f ] of loops at the basepoint

x is call the FUNDAMENTAL GROUP of X at , denoted by π1(X, x). Let h be a path from x to

x′. For each loop f ∈ π1(X, x), the conjugacy by h, h f h–1, gives a loop in π1(X, x′). Since

the conjugacy is isomorphic for simply-connected spaces, we shall drop the basepoint from

the notation.

LEMMA 6 (IMF Homotopy). Every IMF is homotopic to a constant function

wrapped on a circle n times in either the clockwise or the counterclockwise direc-

tion.

Proof. The proof breaks into two parts: (1) I first show any loop on S1 is homotopic to the

composite of single loops—this step is technical but standard; and (2) I then show any

IMF is homotopic to a loop on a circle.

(1) Let p be the canonical descending map that sends a point on the real line to a point

on the circle:

p : R → S1, s 7→ ei2πs.

Define ωn(s) to be the n-times self-winding map:

ωn(s) : S1 → S1, s 7→ (cos 2πns, sin 2πns), (1)
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which gives a loop at a basepoint say (1, 0) on the complex plane. Observe [ω1]
n = [ωn],

since the homotopic equivalence stated earlier. Let ω̃n : I → R be the map s 7→ ns, such

that ωn = pω̃n. The map ω̃n is said to be the lift of ωn and R the covering space of S1.

For each neighborhood Us of a point on the circle, s ∈ S1, p–1 lifts Us to a disjoint union

of n open sets in the covering space. If we fix both x and its lift x̃ ∈ p–1(x), we can uniquely

lift each loop f starting at x in the base space to a path f̃ starting at that specified lifted

point x̃ in the covering space.3

Let f : [0, 1] → S1 be a loop starting at the basepoint s and let f̃ be the unique lift

starting at 1. By definition, f ∈ π1(S1, x) and by construction, p f̃ (1) = f (1) = s, so s is

listed at some integer n. But ω̃n is the loop constructed above in R from 0 to n. Therefore

(1 – t) f̃ + tω̃n gives a homotopy from f̃ to ω̃n and composing it with p gives a homotopy in

the base space from f to ωn. This therefore shows [ f ] = [ωn].

To show [ f ] uniquely determines n. Suppose the contrary: f is homotopic to bothωn and

ωm, for somem , n. But homotopy is transitive, so lifting the homotopy yields ω̃n ≃ f̃ ≃ ω̃n

in the covering space. Yet f̃ (1) is uniquely lifted at n, so m = n, a contradiction.

This therefore shows every loop in S1 at the same basepoint is homotopic to ωn for a

unique n ∈ Z and f̃ be a lift at 0.

3 The proof follows the introduction of the isomorphism between the first fundamental
group of a circle to the infinite cyclic group generated by the homotopy class of the single
loop on the circle (i.e., π1(S1) ≃ Z) in Hatcher (2001). Readers can refer to the famed
exposition for more relevant technical details.
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ns s n∈ ∈ ∈

R I R

C S1 [0, 1]

∈ ∈ ∈

ei2πns s 1

p

ω̃n f̃

ωn f

(2) Let h(x) be an IMF. By Theorem 5, it has symmetric envelope splines g(x) B S {h}+ =

–S {h}–. The map Ft = (1 – t)h(x) + t(g–1h)(x) gives a homotopy from h(x) to a loop

wrapped around a circle of radius 1. Changing of parameter t = x/T gives the map h(Tt)

hypothesized in (1). This therefore proves the claim.

The proof is technical but the intuition is clear (Figure 3.6). The sifting process itera-

tively sifts for components with symmetric splines—these are precisely functions that are

homotopic to loops on a circle. The significance of these loops is established in the follow-

ing theorem.

3.2.3 IMF DECOMPOSITION

THEOREM 7 (IMF Decomposition). Let f(t) be any square-integrable function.

There exists a countable set of IMFs {ωi}i∈Z such that

f(t) =
∞∑

i=–∞
ciωi(t),

where ci( f ,ωi) is a constant over t, for each i ∈ Z.
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Proof. This is immediate fromLemma 6. The n-times self-windingmaps {ωn = ei2πnx : n ∈ Z},

constructed in the lemma are all IMFs with constant envelope splines. Defineω(t) = e–i2πnx

and the inner product between two functions:

⟨ f , g⟩ B
∫ 2π

0
f(x)g(x) dx.

Notice ωn are precisely the orthonormal basis for the Hilbert space L 2([0, 2π]) with the

inner product defined above, which admits the Fourier series decomposition:

Figure 3.6 Homotopic re-
duction of a function to a
loop on a circle.

p

Note. The descending map p is represented as the helix in 3-d space. An arbitrary function
of is shown in black and the n-times self-winding map is shown in blue. In this illustration,
n = 5, if we define clockwise winding as positive. We make the map p : R → S1 clear by
first embedding it in R3 via s ∈ S1 7→ (cos 2πs, sin 2πs, s) and then projecting it down to
R2 via (x, y, z) 7→ (x, y).
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f =
∞∑

n=–∞
⟨ f ,ωn ⟩ωn.

with the Fourier series defining to be

ci B ⟨ f ,ωn ⟩ =
∫ 2π

0
f(x)e–i2πnx dx.

3.3. CONTRIBUTIONS

This paper contributes to the HHT literature in several significant ways. First, it formalizes

a new identification criterion for the IMF that is more precise and conducive for theoret-

ical discussions (Theorem 5). Second, it introduces the idea of homotopy to the nascent

theoretical research of the HHT. The idea is instrumental in mathematics to prove vari-

ous geometric invariances and fundamental for the constructions of other crucial modern

mathematical objects like homology and, I believe, will set further theoretic discussions

of the HHT on a more rigorous footing. Third, by integrating these elements, it provides

an answer to the call for theoretic justification from the HHT literature, e.g., Huang et al.

(1996); Huang and Pan (2006); Kizhner et al. (2005), in the form of a new equivalence the-

orem (Theorem 7, along with Lemma 6) which establishes HHT’s deep connection with

the Fourier transform.

The Fourier transform can be seen as the sifting process in the limit; the sifting process, a

bastardized Fourier transform around the “adaptive” basis. The n-times self-winding maps,

{ωn = ei2πnx}, give a basis to the infinite-dimensional functional space and allow all square-

integrable functions to be decomposed in these basis. In practice, however, most time series

HHT researchers interested in come from physical processes and can be represented by
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a small set of basis—the task now becomes to identify these basis. Since each of Fourier

basis is an IMF and can be represented by a loop starting at the same point around a

circle, the symmetric envelope condition in Theorem 5 sifts out relevant loops from the

infinite possible set of loops. If we allow the radius of the said circle to expand and contract

according to the envelope spline g(x) B S {h}+ = –S {h}–, any IMF is homotopic to the

composite loop gωn. Since in Fourier theory, all loop types in both looping directions are

needed to guarantee convergence for an arbitrary function, this in particular shows any IMF

“convergence” is constructed by allowing the basis to vary with the observations. This in

particular shows any general functional decomposition theory on IMFs (obtained through

the sifting process or otherwise) is equivalent to the Fourier transform.

We are now in the position to address the unanswered theoretical questions posed by

the originators of the sifting process in Kizhner et al. (2005) without relying on further

conjectures about the statistical properties of the process:

“[(a)] Why is the fastest changing component of a composite signal being sifted out first
in the EMD sifting process? [(b)]Why does the EMD sifting process seemingly converge
and why does it converge rapidly? [(c)] Does an IMF have a distinctive structure? (d)
Why are the IMFs near orthogonal?”

a. Lemma 6 shows any IMF is homotopic to a loop on a circle. Fast changing IMFs have

higher wrapping numbers. If we instead fix the wrapping number and allow the radius

of the circle to expand and contract, a fast changing IMF is wrapped around a smaller

circle. Since the sifting process is starting from the outermost envelopes, what have

been enveloped are the remaining IMFs looped around smaller circles. This therefore

explains why fastest changing components are sifted out first.
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b. Convergence is true by construction, especially after the employment of a slack stoppage

condition. We observe faster convergence comparing to the Fourier transform because

of the particular nature of the time series under consideration. Fourier transform re-

quires basis of all wrapping numbers in order to achieve convergence for an arbitrary

function. Yet the time series under consideration are observations from cyclic physical

processes. One can easily construct counterexample where the sifting process fails to

give rapid convergence, or any meaningful convergence at all.

c. This is the content of Lemma 6: all IMFs can be homotopically transformed into Fourier

basis.

d. This is due to the fact the Fourier basis are orthogonal:

⟨ωm,ωn ⟩ = 0, for all m , n.

3.4. EMPIRICAL EXAMPLE

We are now ready to address the empirical application of the HHT through a well-studied

example. I have argued in the previous section that an alternative general convergence

theory of functional decomposition through the sifting process is not possible. Since the

HHT makes no statistical claim, any refinement of the theory must be grounded on a

scientific theory. Indeed, in the hope to verify the usefulness of the HHT, evangelists of

the theory have tested it on many time series with distinct features and well-understood

data generating process. Among them, the LOD data is a most celebrated example.

Some information about the data source and the scientific context. The Earth Orien-

tation Center of the IERS (International Earth Rotation and Reference Systems Service),
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located at the Paris Observatory, provides to the geodesy community the international ref-

erence time series for the Earth orientation parameters (EOP), called “IERS C04” (Com-

bined 04). The Universal Time (UT1) parameter contained tracks the Earth’s rotation in

time. Because the Earth’s rotation is influenced by large-mass events, e.g., the sea currents,

UT1 is not linear with respect to Coordinated Universal Time (i.e., the atomic time). The

excess revolution time, measured in milliseconds, is called length of day (LOD). We ob-

tained the data through Paris Observatory IERS ICRS Center’s website and replicated the

result of Huang and Pan (2006) in Figure 3.7. As an example of the power of the HHT,

Huang and Pan (2006) documents the following data features extracted by the IMFs:

a. IMF1 has a 14-day period and a 19-year modulation, representing the semimonthly

tidal cycle and the Metonic cycle;4

b. IMF2 is mostly high-frequency weather storms; and

c. IMF3 has a 28-day period, representing the monthly tidal cycle, and smaller amplitudes

in El Niño years.5

From a statistician’s point of view, these features could be readily seen in the original

time series and made obvious through standard spectral analyses. Any proponent of an

empirical method needs to confront the confirmation bias. Huang and Pan (2006) though

documents noticeably sharper changes in amplitudes after early 1980s in for example IMF1

4 A period of 19 solar years is almost exactly equal to 235 synodic (lunar) months, first
noted by the polymath Meton of Athens.
5 The Oceanic Niño Index (ONI) is one of the primary indices used to monitor the El Niño-
Southern Oscillation (ENSO). NOAA (National Oceanic and Atmospheric Administration)
uses it to identify El Niño (warm) and La Niña (cool) events in the tropical Pacific, though
the agency uses the HHT to construct the index and amends the classifications.
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3 HILBERT-HUANG TRANSFORM

and hypothesizes that this “may be attributed to the change in the density of data,” does

not however offer explanations to other apparent data features. Since the first two IMFs

are dense with diverse fluctuation patterns over time, we can iterate the sifting process

multiple times to investigate their empirical mode composition, see Figure 3.8. These iter-

ated IMFs consistently contain Gaussian wave patterns at late 1980s and mid 1990s: these

patterns are not immediately apparent in the original time series. However, whether they

are important data features or spurious patterns generated by the choice of splines and

ending conditions can only be answered by earth scientists.

This paper provides a rigorous theory explaining why the transform yields useful results

for its proponents but at the same time yields a stern limit of what it can achieve for

an arbitrary time series. So when will the HHT be useful? Until it is not. This is not to

dismiss the empirical value of the HHT. However, our job as mathematical statisticians

ended after characterizing themathematical nature of themethod in the preceding section.

A shortcut needs no theory to be useful and no theory can make a shortcut more correct

without overparameterization, which only defeats its purpose qua shortcut. Since the HHT

is a heuristic process without substantive claims, it is far more fruitful to take the handy

hints of its results to theorize the underlying physics rather than elaborating further on the

algorithm itself in the hope to make its results more credible. There is no magic algorithm

for science. Box’s warning about overelaboration applies: “Since all models are wrong the

scientist cannot obtain a ‘correct’ one by excessive elaboration. On the contrary following

William of Occam he should seek an economical description of natural phenomena. Just

as the ability to devise simple but evocative models is the signature of the great scientist so

overelaboration and overparameterization is often the mark of mediocrity. (Box, 1976)”
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3.4 Empirical Example

Figure 3.7 Empirical
mode decomposition of
the length-of-day data.
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Note. The original time series of the IERS LOD observations from 1964 to 1999 is shown
in the top panel. The remaining nine time series are IMFs identified through the sifting
process. The plots of the IMFs are not to the same scale (actual scales noted on y-axes).
The parameter, UT1 – UTC, is part of the Bulletin B EOP Combined Series C04, under
2014 International Terrestrial Reference System (ITRS2014). El Niño years shaded in blue
(ONI>1.5), see Climate Prediction Center (2018).
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Figure 3.8 Three more
iterations of the empirical
mode decomposition.
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Note. We iterate the sifting process three times (from top to bottom) on IMF1 (left panel)
and IMF2 (right panel), identified in Figure 3.7. For convenience, only the first three IMFs
are included for each iteration, since the rest of IMFs do not have significant amplitudes.
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CHAPTER 4

DISCUSSIONS

The spherical space form is ubiquitous in statistics, though often in disguised forms. As a

manifold with a constant sectional curvature, it serves as an indispensable geometric ref-

erence to study nonlinear problems in statistics. In the first example, it emerges naturally

as the benchmark space, due to the curvature bound placed on the manifold under investi-

gation. In the second example, it provides the geometric representation of the basis of the

Hilbert space as well as their empirical counterparts, the IMFs. Unlike it is in a Euclidean

space, a vector in a curved space cannot be moved about freely through the usual arith-

metic of coordinates. The innocuous statement has serious consequences. Losing sight of

this fundamental restriction leads to a cumbersome proof that structurally depends on

an unproven assumption alleviating this restriction in the first example and a theoryless

algorithm that essentially attempts to bypass this restriction in the second example. Dif-

fernetial geometry is the solution, even though our interest is strictly statistical.

The greatest lesson of differential geometry is the idea of local trivialization. Amanifold,

with its nonlinear global properties, is always reduced to Euclidean spaces locally with the

so-called charts. Even though charts collectively are known as the atlas of the manifold

and we are assumed to be able to travel over a manifold freely with the atlas by stitching
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up patches of the charts together, the manifold however is not assumed to have global

coordinates. In other words, differential geometry provides the needed tools to study a

manifold without relying on any particular embedding in a vector space. This idea extends

to higher constructions like tangent bundles. A vector bundle, when needed to be expressed

in coordinates, is always done so through “trivializations”—no matter how complicated

it transforms over the whole manifold, locally it is trivialized as U × E, where U is an

open neighborhood on the manifold and E is a vector space. Algebraic topology takes this

step even further and completely dispenses with charts. The most important properties of

Figure 4.1 Statistics from
differential geometric
point of view
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geometric objects and invariances of smooth maps between them can often be described

algebraically (so-called intrinsically) without referencing any coordinate, local or global.

As Rao (1945) demonstrates, statistical inference exploits the nonlinearity of a func-

tional form. Since differential geometry is the mathematical language of nonlinearity, to

any statistician with modern geometry background, the lure for an integrated geometric

statistical theory is immense. Almost all statistical objects have straightforward counter-

parts in differential geometry: Parameters under restriction can be thought of as a regular

manifold; observations as points in some vector bundle over the manifold; probability

densities as differential forms; expectations as integrations over vector fields; parameter

estimation as fiber identification (Figure 4.1). If only there were a unified geometric statis-

tical theory, any statistical confusion of a geometric sort, as demonstrated in this paper,

could be completely avoided! Indeed, this parallel construction project is the basic research

agenda of information geometry. The vision is clear; the impact would bemonumental; and

even the journey seems noble and idyllic. But in spite of Rao’s pioneering work, Hilbert’s

spiritual guidance, and the dedicated and persistent work of talented researchers, these

efforts by all measures have stalled.

In my opinion, the history of Esperanto, the ill-fated universal language, provides a cau-

tionary tale. Zamenhof, Esperanto’s creator, shares information geometers’ vision: “Were

there but an international language, all translations would be made into it alone [...] and all

nations would be united in a common brotherhood. (Zamenhof, 1889)” Yet in spite of gen-

erations’ efforts, no work of cultural significance has been produced, save translated work

that the language is designed to avoid. Statistics and differential geometry are in essence

two different languages. Even though the latter has more natural expressions for nonlinear

phenomena and affords valuable geometric insights through its lexicon, the quixotic at-
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tempt of interdisciplinary researchers in information geometry ignores the historical con-

tingencies of scientific research qua human endeavor: Fisher (1922) has set statistics on

its own drift; occasional inconveniences cannot turn the tide on the parting disciplines.

Hilbert’s declaration that any mature science automatically becomes integrated with math-

ematics might very well be true but maturity is a natural process and it comes with growing

pains. This paper remedies these pains rather than offering a prescription for premature

integration.

4.1. LITERATURE REVIEW

Though Mahalanobis (1936) first gives the measure of distance of an observation x =

(x1, x2, . . . , xN)′ of a multivariate normal distribution with mean µ and covariance matrix

Σ,

ρ2M = (x – µ)′Σ–1(x – µ),

now canonized as the Mahalanobis distance and Bhattacharyya (1943, 1946) extend the

geometric idea of the Mahalanobis distance to a measure of divergence between two popu-

lation, it is Rao (1945) who first explicitly introduces to statistics the idea of a Riemannian

metric (in the form of Fisher information) and the associated geodesic distance (called the

Rao distance) on the parameter space (i.e., the Rao space) viewed as a differential manifold.

The choice of metric breaks off from the geometry literature and is influenced by Fisher,

who presented a full account of the foundations of theoretical statistics in an extraordi-

nary exposition, Fisher (1922), wherein the expected information quantity was used and

formally presented shortly after (Fisher, 1925, 1990 reprint). Established as “an unbroken

link in the continuing evolution of modern statistics (Pathak, 1997),” Rao essentially ex-
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tends the asymptotic concepts of consistency, efficiency, sufficiency, and information loss

introduced in Fisher (1922) to finite samples.

Efron (1975) revives his geometric line of investigation by introducing the concept of

“statistical curvature,” which quantifies how similar an arbitrary one-parameter family of

curves are to the exponential family: the quantity is of statistical interest because the MLE

for a vector parameter is a sufficient statistic only for multiparameter exponential families

(Fisher, 1922, 1934). As its accompanying discussant paper, Reeds (1975), similarly ar-

gues, since Rao (1945) establishes the Fisher information as a Riemannian metric, earlier

results (Huzurbazar, 1950, 1956; Mitchell, 1962; Holland, 1973) in their collaboration

constructing explicit matrix expressions of the transformations of the Fisher information

in orthogonal parameters, in fact implicitly seek to construct an affine connection in amov-

ing orthonormal frame—an archetypal differential geometer question—and Efron (1975)

is the “logical successor” to present a more cogent differential geometric picture to statisti-

cal estimation. Dawid (1975, 1977), citing Hicks’s (1965) emphatic caution against explicit

coordinate-dependent approach to apply differential geometry to the study of statistics,1

sketches out Efron’s main arguments in coordinate-free languages and gives the definition

of the Efron connection, implicitly used in Efron (1975). Applying the idea of “statistical

curvature,” Efron (1978) and Efron and Hinkley (1978) describe some geometric results

relating the observed and the expected parameter spaces of the multivariate exponential

family in the econometric context of assessing the accuracy of the MLE θ̂: to what extent

1 I couldn’t find relevant quotes from the source and can’t independently verify the claim
but as the Huzurbazar-Mitchell-Holland explicit construction of the Fisher information
matrix transformations illustrates, a coordinate-free approach of differential geometry
could avoid cumbersome calculus computations caused by the need to keep track of co-
ordinate changes and as a result often gives cleaner proofs to questions of existence and
invariance.
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can the Fisher information I(θ) be replaced by −∂2
θ2
log f(x; θ)|θ=θ̂ in the variance bound for

θ̂?

Encouraged by the success of Efron and his collaborators, Madsen’s thesis (1978; 1979)

discusses their implications on assessing the second order estimation accuracy of the MLE

and competing estimators; Kass’s thesis (1980) develops similar geometric ideas for the

model space by focusing on the Jeffreys priors, which is proportional to
√
det I(θ) and by

construction invariant under reparameterization of the parameter vector θ (Jeffrerys, 1998

reprint); and Amari (1982a,b), synthesizing his earlier notes (1968; 1980) and Efron’s work

on one-parameter family of curves, presents to a larger audience a full multiparametric

theory of curved exponential families with new forms of “curvatures.” Barndorff-Nielsen

et al. (1986) gives a nontechnical account of the role of differential geometry in statistical

theory.

4.2. GLOSSARY

Notation and conventions largely follow Lang (2001). A bijection f : X → Y is called a

diffeomorphism if both f and f –1 are smooth, i.e., all partial derivatives exist. We often

say locally, meaning there is a open neighborhood with the desired property for each point.

A set is called a manifold if locally it is diffeomorphic to Rm. We will call it for short a m-

manifold. We use E for a Euclidean space of an arbitrary dimension. The diffeomorphism

φ : Ux → E is called a chart, or local coordinates.

You are familiar with tangent vectors. In differential geometry language, a tangent vec-

tor is an equivalency class. Let v be a vector in E, we identify v with all vectors w such that

there exists another compatible chart ψ:
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(ψφ–1)′(φx)v = w.

Observations x are vectors without coordinates. All tangent vectors at a point x form a

vector space called the tangent space, denoted by TxX. Disjoint union of spaces gives the

idea of a bundle. The disjoint union of tangent spaces Tx(X) for all points on manifold

is called a tangent bundle. We can similarly form a vector bundle over a manifold with

the map Y π : E → Y, by associating a vector space E with each point of Y and disjoining

these copies of spaces together. The vector space π–1y is often denoted by Ey and it’s called

a fiber at y.

Let π : E → Y be a vector bundle and f : X → Y a map. Then the vector bundle at Y can

be pulled back at X by associating x with the vector space ( f ∗E)x B Ef(x) and this induces

the vector bundle f ∗π (and the bundle map π∗ f ):

f ∗π : f ∗E → X.

We call f ∗E the pullback of E by f. (We can analogously form the pushforward bundles

and these induced maps are denoted by f ∗.) Precomposition with a function provides the

intuition of a pullback.

Because we are dealing various types of statistical objects, it is needed to introduce the

category language—this allows us to describe maps between these objects without having

to construct them formally. A category is any collection of objects with associative com-

position law with an identity element for each object, calledmorphisms, identified by the

objects JX,Y K. Sets, groups, rings, manifolds, metric spaces, vector spaces are all example
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of categories (with their corresponding morphisms and additional structures). A function

is a morphism between sets: the converse is not true.

JX,X K is called an endomorphism. JX,Y K is called an isomorphism if each morphism

has a inverse. An isomorphic endomorphism is an automorphism. An isomorphism in

the category of manifolds is called a homeomorphism. Functors is a meta-category: a

category of categories. A functor gives a map between categories that is also a morphism

between these categories—by definition, it respects their respective identities. Let F be a

functor and p, q be morphisms: if F(pg) = F(p)F(q), the fuctor is said to be covariant; if

F(pg) = F(q)F(p), it is called contravariant.

Derivatives generally exist without calculus. We often say locally, meaning there is an

open neighborhood with the desired property for each point. Let p : E → F be a continuous

map. If locally there exists another map dp : E → F,

p(θ0 + y) = p(θ0) + dp y+ ψ(y)

for a small y. dp is called a derivative and ψ is tangent to 0. Let pi : E → Fi be con-

tinuous maps. Partial derivatives dfi by holding all but the i-th component fixed. Functor

morphisms induce natural transformations of the objects.

Let f : X → Y be amap between vector spaces (or groups in general). The image of a map

is the subspace f(X) ⊂ Y, denoted by Im f and the kernel of it is the subspace Ker f ⊂ X,

such that for each element x ∈ X, we have f(x) = 0. The quotient Y/ Im f is the cokernel fo
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the map f . The sequence

X
f
−→ Y

g
−→ Z

is called exact if the image of f is equal to the kernel of the g. If follows these definitions

that:


0 −→ X

f
−→ Y

Y
g
−→ Z

0−→
is exact, if and only


f is injective;

g is surjective.

The short exact sequence

0 → X
f
−→ Y

g
−→ Z → 0

is called split if there exists a homomorphism h : Z → Y such that the composition gh is

the identity map on Z. For any map f : X → Y, the following exact sequence connects the

kernel with its cokernel:

0 → Ker f → X
f

−→Y → Coker f → 0.

Some terminology to facilitate the discussion of maps between manifolds. Let f : X →

Y be a map between two manifolds and (Ux,φ) and (Vf(x),ψ) be charts at x and f(x) corre-

spondingly. Consider the map on a product space U1 ×U2 (as an open mapping):

fV, U B ψ fφ–1 : U1 ×U2 → Vf(x).

f is an immersion if and only we can find charts that makes f ′V, U injective; f is an submer-

sion if and only we can find charts that makes f ′V, U surjective. Both idea are intuitive as
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descriptions of isomorphism classes with respect to the larger product space: an immersion

gives an isomorphism from U to a subspace in U1 ×U2; submersion gives an isomorphism

from U to the whole product space U1 × U2. An injective immersion is called a embed-

ding. An important example of an immersion that is not an embedding is a flat surface to

a self-intersecting surface.
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PART II

EMPIRICAL REMEDIES
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„Das Bild ist eine Tatsache.2“

Abschnitt 2.141,

Tractatus Logico-Philosophicus (1921)

— Ludwig Wittgenstein

2 “A picture is a fact.” D.F. Pears and B.F. McGuinness’s translation.
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CHAPTER 5

GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

The preceding part draws attention to certain hardwired theoretical limitations of han-

dling spherical space forms in statistics with classical mathematical tools and calls for

algebraico-topological extensions of existing theories: in Chapter 2, the theoretical limita-

tion is manifested in the unjustified assumption (their Assumption 1) about the efficacy of

the very analytico-geometric approach undertaken and we transcend from the dialectical

contradiction by reframing the problematics with coordinate-free differential-geometric

languages; in Chapter 3, the limitation is recast as the inability of a prima facie empirically

useful statistical procedure to make any refutable statements and we put its mathematical

core on display under the penetrating lens of modern algebraic topology.

These theoretical discussions are in essence a methodological manifesto—but without

offering any concrete statistical procedures, albeit of long-term theoretical interest, they

remain abstract and far removed from the technocratic ethos of the statistical practice to-

day. To alleviate this shortcoming and further ground these lofty discussions in the current

communal research efforts, I now offer a collection of novel interactive graphic tools for

the empirical study of time series, in lieu of a grand synthesis unattainable at the moment.

These tools, in spite of their diverse appearances, are in fact the progeny of the foregoing
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discussions on the geometric interpretations of harmonic decompositions of time series.

Thematically, Chapter 2 lays out the foundation in the form of a generalized curvature

comparison theorem to use spherical space forms in statistics, qua the model space of a

constant curvature. Chapter 3 further demonstrates how these spherical space forms, as

basis for the Fourier transform, are used to reconstruct a time series and cautions against

intuitionists’ attempt to formulate more expedient decompositions. Chapter 2 sets the

stage; Chapter 3 points to a void; and this chapter remedies this theoretical void with a

suite of new graphic tools to help practitioners explore the dynamic harmonic structures

of high-dimensional time series.

5.1. BACKGROUND

Seeing is believing. Yet unlike performing statistical tests, the simple task of seeing is

strictly confined to 2 dimensions, in print and on screen. Even imagination can only

extends it into the third. Adding time, it is the complete enumeration of the space-

time. But the universe, according to the M-theory, has 11 dimensions—we are all low-

dimensional creatures in a high dimensional universe! To visually express high-dimensional

data relations—dynamically in the context of time series—with a plot of by comparison

negligibly low dimensions is part data science, part art of (mis)direction. Thanks to the ever

cheaper computational power, manipulating high-dimensional objects numerically has be-

come a routine task of the trade. Yet without compatible graphical tools to visualize these

high-dimensional objects, statistical research is essentially blind.

We provide a suite of four new graphical tools to help researchers explore the dynamic

structures of high-dimensional time series: (a) the staff plot; (b) the orbit plot; (c) the tunnel
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5.1 Background

plot; and (d) the impulse response plot. Unlike traditional plots designed for print, these

plots presented are a new breed of screen-first graphical applications with rich interactive

features. Utilizing latest programing libraries for high-performance graphic rendering and

runtime manipulation of graphic elements, these new tools, though equally at ease on pa-

per as figures in this chapter demonstrate, are designed to be workhorse data exploration

utilities. The staff and the orbit plots are animated 3-dimensional models: they are de-

signed to address the shortcomings of scatter plots. The tunnel and the impulse response

plots are interactive 2-dimensional plots: they are improved heat maps.

Figure 5.0 outlines the organization of the plots presented in this chapter. Typically,

in papers debuting static plots, authors showcase the versatility of a new plot with diverse
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of figures in this chapter.
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Note. Key plots presented in this chapter are marked by an asterisk (*). Illustrative figures
not directly related to the examples are in italic. Figures in this chapter are optimized for
screen or color printing at a resolution of at least 300dpi.
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examples. We however take more of a case study approach with two involved examples, for

two simple reasons. First, we have an array of unconventional tools to introduce. The sheer

number of new plots demand our focus. Second, our goal is to exhibit intricate dynamic

structures hidden in high-dimensional time series. The suite of tools are meant to be used

in tandem. Focusing on the same datasets allows us to tease out these threads from different

angles. Since scatter plots and heat maps are standard statistic tools, readers are invited

to start from Section 5.2 and refer to Section 5.1.2 for background information on the

examples.

5.1.1 PROBLEMS WITH EXISTING PLOTS

The scatter plot, simple in its construction as the direct spatial representation of a 2- to

3-dimensional dataset, is still the definitive tool to visualize complex patterns of bivari-

ate dependency. Its strength is its faithfulness: viewed as a map, a scatter plot gives an

isomorphic representation to a low-dimensional dataset; one can theoretically reconstruct

the dataset from the plot, given a measurement device of arbitrary precision. We will em-

phasize this conceptual point throughout the chapter and treat it as the guiding design

principle—for each plot, we will discuss at the start whether it represents the data faithfully

and; if certain data have been modded out, what are the justifications for the equivalence

relation implicitly declared. This might seem at first a pedantic exercise but, as the chi-plot

example demonstrates, essential to establish plotting as a scientific discipline.

Faithfulness comes at the cost of clutter, which is the obvious shortcoming of scatter

plots. Since all data are transcribed literally as points in a Euclidean space, the scatter plot

is a low-dimensional graphic tool and researchers would have to examine scatter plots for all
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variable pairs in order to piece together the correlation structures 1 of a high-dimensional

dataset. A natural solution is to shrink its size and present many scatter plots in a matrix

(Hartigan, 1975; Cleveland and McGill, 1984). R alone has numerous implementations

of this basic idea, some with additional complications: pairs (R-Core), lattice:splom

(Sarkar, 2008, Trellis Graphics for R), DescTools:PlotMatrix (et al., 2018, Tools for De-

scriptive Statistics), and Deducer:ggcorplot (Fellows, 2012, A Data Analysis GUI for R).

However, these plot matrices only confound the cluttering problem and become impossible

to read for high-dimensional data (Friendly, 2012).

Plots like the chi-plot2 (Fisher and Switzer, 2001, based on the chi-squared statistics)

and the K-plot (Genest and Boies, 2003, based on Kendall’s tau) are essentially transformed

scatter plots and, as we argued above, cannot beat the scatter plot in its faithfulness. Take

the chi-plot for example. It is said to reveal far richer bivariate dependence relations to

formal statistical tests such as Wilbert C. M. Kallenberg and Rafajłowicz (1997); Kallen-

1 We use the term “correlation” for Pearson’s correlation coefficient throughout the chap-
ter. When we say the correlations of a multivariate time series, we broadly include auto-
correlations and cross-correlations of all pairs of variables up to a given lag, unless stated
otherwise.
2 Consider a n-sample of 2-dimensional observations {(xi, yi)}ni=1

. For any given pair (xi, yi),
we can define the following empirical c.d.f.s:

Fi = 1
n–1#{xj : xj < xi};

Gi =
1

n–1#{yj : yj < yi};
Hi =

1
n–1#{(xi, yj) : xj < xi, yj < yi}.

and
{
F•i = Fi – 1/2;
G•
i = Gi – 1/2, .

The chi-plot is the graph of (χi, λi), where

χi =
Hi – FiGi√

Fi(1 – Fi)Gi(1 – Gi)
and λi = 4sgn(F•iG

•
i )max(|F•i |

2, |G•
i |
2). (1)

65



5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

berg and Ledwina (1999), suggesting a deeper link between the chi-plot and the copula

functions. The “richness of the graphs” is however the consequence of a poor choice of the

distance function λ. The distinct lobed-structures in many chi-plots,3 which are assumed

in the literature to suggest mixing of different distributional families, are in fact largely

spurious features of the jumping points in the signed distance function λ and simply dis-

appear if we choose a more conventional smooth distance function.4 Fisher and Switzer

(1985, 2001) does concede there is no good reason to choose any particular functional

form of the distance function λ and offers several alternative distance functions. But in

Fisher and Switzer (1985, 2001) and related literature, the distance function in Equation

(1) is almost used exclusively.

The heat map takes a different approach. It does away with geometric representations

of variables but instead encodes the value of research interest, usually correlations, with

colored cells. This new approach, thanks to the invention of high-resolution color display

monitors, allows researchers to effectively visualize the correlations of a high dimensional

dataset. Yet in practice the heat map is more of an impressionist painting than a pre-

cision instrument: it leaves researchers with a hazy impression of the overall correlation

3 Figure 5.1(a) reproduces the example of Fisher and Switzer (2001). The original dataset
(not publicly available) come from Griffin et al. (1999), which analyzes the element com-
positions of 13,317 individual grains of mantle-derived peridotic garnet.
4 Figures 5.1(b)–(d) illustrate the point. Panel (b) gives the scatter plot of a randomly gener-
ated normal sample with a weak positive correlation. To examine how the chi-plot remaps
each point, we introduce a color gradient to encode each point’s 2-dimensional position.
Panel (c) illustrates Fisher and Switzer’s λi (Equation 1) and panel (d) gives the correspond-
ing chi-plot, with the signature arch. Note how originally adjacent points are redistributed
according to the idiosyncratic lobed-structures of the chosen distance function. Panel (d ′)
demonstrates these artificial features disappear with a more mild choice of the distance
function, e.g., the linear distance function in (c ′).
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distribution but makes identifying each cell by variables difficult. Clustering can help. But

it doesn’t solve either the precision or the navigational problems, while creating its own

problems in the process: for example, clustering depends on the method of seriation and is

computationally expensive (McKenna et al., 2016). Wilkinson and Friendly (2012) provides

a historical review of the heat map. In the context of high-dimensional time series, we are

often interested in studying how correlations change along lags. Heat maps for different

lags like Figure 5.2 can readily show the overall decaying of correlations as we gradually

increase the number of lags. However, they offer little help to answering simple observa-

tional questions like these: a) how fast does the correlation of a given pair decay along lags?

(b) are there any outliers? or (c) what variables do the cells of a certain color represent?

5.1.2 PERSISTENCE OF TIDAL-LOCKED PERIODS

We will use the suite of new tools to visualize the intricate dynamic structures of two well-

studied datasets. The first example is the monthly unemployment rates (seasonally ad-

justed) of 50 U.S. States and the District of Columbia (D.C.) from January 1976 to May

2018 released by the U.S. Bureau of Labor Statistics, as reported by the Federal Reserve

Bank of St. Louis. The second example is the 512 constituent stocks of the Standard and

Poor’s 500 (the S&P) index from February 8, 2013 to February 7, 2018, using the Daily

Stock File database from the Center for Research in Security Prices (CRSP) at The Uni-

versity of Chicago Booth School of Business. Figure 5.3 gives the complete list of these

stocks and their Standard Industrial Classification (SIC) numbers: manufacturing (173

stocks, 33.8% of the sample); finance, insurance and real estate (96, 18.8%); services and

public administration (74, 14.5%); transportation, communications, electric, gas and san-
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itary service (68, 13.3%); wholesale and retail trade (58, 11.3%); mining and construction

(31, 6.1%); and the rest do not have an official SIC code assigned (12, 2.3%).

It’s not common practice to talk about phases of time series outside of the context of

macroeconomics. Before arguing formally in Section 5.2 that phases are simply correla-

tions on a sphere, see Equations (2) and (3), we first provide some elementary empirical

evidences on the harmonic aspects of stock prices. This is of course not to present a new

theory about stock returns, which is beyond the scope of this modest exposition on purely

descriptive visualization tools. In fact, the very premise of studying stock prices, rather

than their returns, is very much against the established conventions in the field of finan-

cial statistics, for sound financial and statistical reasons. However, since we don’t engage

with financial theories here and price levels in general have profiles more of the desired

smooth wave-like forms (details see Section 5.3.1), let’s treat them naively as anonymized

time series stripped of far-reaching financial implications. Curious readers are invited to

redo these exercises with stock returns with the open-source tools provided (Section 5.5).

We first rescale all prices from 0 and 1, since we are only interested in the shapes of

these line plots. Figure 5.4(a) shows these prices are very weakly correlated but with non-

trivial dynamics as evidenced by the composite plot in Panel (b). We see darkened areas

in the bottom left corner (2003–2014), the upper right corner (mid 2017–2018), as well

as a handful of darkened strands in the middle (e.g., 2015): this suggests even the overall

correlations are very weak, there are prolonged periods when a large subset of the time

series move in synchrony. In particular, we notice two defined half circle patterns in the

bottom left corner.
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To further analyze the phasal dynamics, we wrap the time series on a unit circle and

track their phases, so that local maxima always give phase-0 and local minima always give

phase-π (details see Section 5.3.1). Figure 5.5(a) gives the phasal probability density across

time. Panel (b) gives the corresponding contours. We observe large elliptical regions in

magenta, indicating probability concentrations in some phases over time. Indeed, we see

the three phasal density peaks at π at the start of the time series, corresponding to the

half circles pattern described. To better visualize these phasal dynamics, we introduce a

density-contour hybrid plot in Panel (c), where only high density regions are highlighted.

As we expect, there are periods when these time series are out of phase and fluctuate in

their own cycles: e.g., from 2017 to 2018, even though we observe dark bands of price levels

in Figure 5.4(b), the phases of these series are evenly distributed; this is reflected in Figure

5.5(c) as flat probability density curves from 2017 to 2018. However, there are also periods

when these series move together and certain phases have elevated probability densities in

(c): e.g., in late 2013 (around Period 150), we observe the probability density peak gradually

shifts from phase-π to phase-0; in early 2014 (around Period 210), the peak moves from

3π/2 to π; and from mid 2015 to early 2016 (Periods 600–800), there are significant and

irregular phasal density shifts. What is happening? What components are moving in sync?

Figure 5.6(b) displays the composite phasal plot. Comparing to the composite level plot

in Figure 5.4(b), we observe distinct patterns of phasal integration: when phases are out

of sync, the composite phasal plot displays a blurry image of curves (e.g., 2017–2018);

when they come in sync, however, sharp sinusoid shapes emerge (e.g., late 2013 and late

2015). Often, phases do not overlap but move in sync: we call the period when time series

share the same harmonic frequency, their tidal-locked period. The intuition will become

clear in Section 5.2 when we introduce the orbit plot. Figure 5.6(a) counts the length
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of each tidal-locked period for each pair of the first 40 time series. Since the correlation

matrix is symmetric, we stack the entries of its upper triangle row by row, differentiated by

background color blocks. We visualize the lengths of tidal-locked periods by colorizing the

horizontal stripes with the yellow-red gradient. Note tidally locked periods widely exist for

all pairs, though of varying lengths and frequencies.
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Figure 5.1 Chi-plots for
bivariate dependence
screening.

Note. (a) Ranked scatter plots and corresponding chi-plots, replicated from Fisher and
Switzer (2001); (b) sample of randomly generated normal scatter plot; (c) Fisher and
Switzer’s λi (Equation 1) and (d) corresponding chi-plot; as well as (c ′) linear λi = Hi and
(d ′) corresponding chi-plot.
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Figure 5.2 Heat map of
cross-correlation of differ-
ent lags.

Note. Monthly unemployment rates (seasonally adjusted) of 50 states from January 1976
to May 2018, U.S. Bureau of Labor Statistics, retrieved from Federal Reserve Bank of St.
Louis. States sorted by postal codes. (a) Lag 0; (b) Lag 4; (c) Lag 8; and (d) Lag 12.
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Figure 5.3 List of all
stocks tracked.
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Note. S&P 500 Index stocks from February 8, 2013 to February 7, 2018, CRSP.
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Figure 5.4 Cross correla-
tions of S&P 500 stocks.

Note. Daily closing price of S&P 500 Index stocks from February 8, 2013 to February 7,
2018, Daily Stock File, Center for Research in Security Prices (CRSP), The University of
Chicago Booth School of Business. (a) Heat map of cross correlations; and (b) composite
plot of closing prices of all stocks tracked, rescale from 0 to 1.
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5.1 Background

Figure 5.5 Phasal kernel
density across time.

Note. (a) Empirical phasal kernel density over time (i.e., each vertical curve, an empirical
p.d.f. of phases of all stocks tracked); (b) corresponding contour plot, lighter color for higher
probability density; and (c) zoomed hybrid plot, higher density region colored for clarity.
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Figure 5.6 Prevalence and
persistence of tidal locking
in stock prices.

Note. (a) Tidally locked periods, all 820 combinatorial pairs of first 40 stocks shown; and
(b) composite phasal plot of stock prices, cf., composite price level plot in Figure 5.4(b).

Let p1t , p2t be the phases of two time series. Define their phase difference at t to be dt =
p1t –p

2
t . Period t is declared to be a tidal-locked period if∆t = |dt –dt–1| < 5◦, where we take

into consideration the spherical geometry so that∆t ∈ [0, 2π). Let It, q = {t, t+1, . . . , t+q–1}
be a consecutive segment of tidally locked periods, so that p1t and p2t are not tidally locked
at t – 1 and t+ q. We call q = #It, q the length of the tidal-locked periods. To avoid trivially
tidal-locked periods, we are only interested in It, q, that is, periods tidally locked for at least
20 consecutive trading days.
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5.2 Staff Plot

5.2. STAFF PLOT

Wefirst introduce the dynamic staff plot to visualize lagged correlations of high-dimensional

time series. The link between the correlation and spherical geometry might not be immedi-

ately obvious—the former, after all, is used to measure linear dependence and often fails to

detect the presence of nonlinear causal relationships which include, inter alia, spherical de-

pendence. Yet there exists a canonical isomorphism between the correlation and the angle

of two variables. The staff plot exploits the property. To exhibit this simple isomorphism,

consider two univariables of length T, x = (x1, x2, . . . , xT) and y = (y1, y2, . . . , yT). Their

correlation (more accurately, their lag-0 correlation)

r(x, y) =
∑T

t=1(xt – x)
∑T

t=1(yt – y)√∑T
t=1(xt – x)2

√∑T
t=1(yt – y)2

can be written as

r(x, y) =
x•

∥x•∥ · y•

∥y•∥ = cos⟨x•, y•⟩, (2)

where the 0-centered observations x• = x – x 1T = (x1 – x, x2 – x, . . . , xT – x) and y• =

y – y1T = (y1 – y, y2 – y, . . . , yT – y) are the univariables with their respective means

subtracted. Equation (2) therefore gives the isomorphism between the correlation of the

two univariables r(x, y) and their centered angle ⟨x•, y•⟩, using the principal value of arc-

cosine. If we further define the standardization procedure as

x◦ = x•/∥x•∥ and y◦ = y•/∥y•∥,
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their correlation r(x, y) can be conveniently written as

r(x, y) = x◦ · y◦ = cos⟨x◦, y◦⟩.

Given an n-component time series x1·, x2·, . . . , xn· of equal length, its components

after standardization, x◦1·, x◦2·, . . . , x◦n·, can be conveniently represented as points on an

n-sphere, Sn. Consequently, the pair-wise correlations of these components can be seen

under the isomorphism as their angles on the big circles, which for brevity we will call their

phasal differences.5 If we further project all these points onto any one of the big circles

formed by connecting two noncollinear points on a hypersphere, x and y, and without loss

of generality, move x to the north pole, the correlations of all components with x can be

plainly represented by the latitudes of these projected points.6 This simple geometric fact

is the motivation for correlation plots based on spherical projection, e.g., the s-CorrPlots

(McKenna et al., 2016). We will briefly restate their construction procedures in the follow-

ing section but readers can find more detailed explanations in McKenna et al. (2016).

Lagged correlations, as correlations of shifted variables, inherit the same spherical ge-

ometry. The lag-ℓ correlation between x and y,

5 This geometry fact gives the intuitions behind the unconventional notations: the centered
observations x• and y• are interior points of a disk of some radius and their normalized
counterparts x◦ and x◦ lie on the boundary of the unit disk, i.e., on a unit circle, S1.
6 Strictly speaking, we should use the geographic terms, such as the poles, the equator,
and the latitude circles, for a 3-dimensional sphere, S2, only. However, the terms are clear
when they are used to describe the projection on the xy-circle, since one can extend into
the additional (and irrelevant) dimension by choosing an arbitrary third univariable, z,
provided it’s collinear with neither x nor y.
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rℓ(x, y) =
∑T

t=ℓ+1(xt – x)
∑T–ℓ

t=1(yt – y)√∑T
t=ℓ+1(xt – x)2

√∑T–ℓ
t=ℓ(yt – y)2

.

can be written as

rℓ(x, y) = x◦+ℓ · y
◦
–ℓ = cos⟨x◦+ℓ, y

◦
–ℓ⟩, (3)

if we use x+ℓ to denote the ℓ-truncated x (i.e., a univariable with its first ℓ observations

removed) and y–ℓ to denote the ℓ-lagged y (i.e., a univariable with its last ℓ observations

removed). Both shifted observations x+ℓ and y–ℓ now have length T – ℓ.7

5.2.1 CONSTRUCTION

The staff plot is straightforward to construct, at least conceptually (Figure 5.7)—it is

simply the s-CorrPlots (McKenna et al., 2016) of multiple lags stacked together in a 3-

dimensional space. The added complication does require a brand new implementation

7 We have of course overloaded the notations for x and y for convenience and it’s clear from
the context that x ≡ 1

T–ℓ
∑T

t=ℓ+1 = x+ℓ and y ≡ 1
T–ℓ

∑T
t=ℓ+1 = y–ℓ.

Figure 5.7 Construction
procedure of staff plots.
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and lead to engineering complications with the graphic tools at the moment. However,

this is a minor concern here: I will address related computational issues in the technical

note at the end. The staff plot can be constructed as follows.

(a) We have just demonstrated in the previous section that standardized components of a

multivariate time series (of a given lag ℓ) can be represented as points on a hypersphere.

For clarity, we now suppress the subscript for the lag.

(b) For any two noncollinear variables x and y, the Gram–Schmidt procedure gives two

orthonormal basis:

x◦ and y◦⊥ =
x◦ – (x◦ · y◦)y◦
∥x◦ – (x◦ · y◦)y◦∥ .

Simple projection of any component z◦ onto the orthonormal basis x◦ and y◦⊥ gives the

coordinates of z◦ on the unit xy-disk. More specifically, let

Pxy ≡ [x◦, y◦⊥]
T

be the 2× (T – ℓ) projection matrix. The desired coordinates of z◦ (or more strictly, z◦–ℓ,

if we wish to express the fixed lag explicitly) on the reference xy-disk are simply Pxyz◦.

This therefore projects all points on a hypersphere onto a unit correlation disk.

We name the component x the pivot component: all points produced on the graph

here and in the subsequent procedures represent either the lagged autocorrelations

of this component or the lagged cross-correlations of this component with the other

components. For easy identification, we shall always place the pivot component at the

north pole. We call the component y the secondary component.
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(c) We draw latitude guidelines at the equator and various significant levels for the cor-

relations with the pivot component according to Equation (2): 0 = 0◦; ±0.4 =

±53.13◦; ±.6 = ±66.42◦; ±.8 = ±78.46◦; and the perfectly correlated points (±1) are

located at the antipodal polar points (±90◦).

(d) Repeat the previous steps for all lags of interest and stack these correlation disks in-

dexed by the lag numbers sequentially with lag-0 correlation disk at the top.

(e) Finally we draw a line stringing together points from the same component and for easier

identification, color adjacent components differently.

5.2.2 EXAMPLES

Figure 5.8 provides a tutorial to the staff plot. Comparing to the heat maps in Figure

5.2, the staff plot gives a far more intelligible visualization to lagged correlations of high-

dimensional time series. The example plot includes the lagged correlation of Iowa with

all 50 states, including itself. To avoid cluttering, only correlations of lags- 0, 1, 3, 6, 12,

18, 24 are displayed. Lagged correlations from the same pairs are connected with line seg-

ments, giving the appearance of strands of beads. We have also colored correlation strands

differently to distinguish them from one another.

Here is a list of all graphic elements and their statistical interpretations. Readers should

bear in mind that the staff plot in our implementation is a fully interactive 3-dimensional

model: users have the option to zoom and rotate their viewing perspectives and highlight

a specific correlation strand of interest.
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(1) Plot name. The variable name of the pivot component is prominently displayed at the

top of the staff plot. It clearly indicates to users that this staff plot is about the lagged

correlations of Iowa. Users can alternatively identify the pivot component by locating

the correlation strand with the first node at the north pole, since the lag-0 correlation

of any component with itself is by definition 1.

Figure 5.8 Staff plot: toy
example.

Note. Monthly unemployment rates (seasonally adjusted) of 50 states from January 1976
to May 2018, U.S. Bureau of Labor Statistics, retrieved from Federal Reserve Bank of St.
Louis. For clarity, only correlations of lags 0, 1, 3, 6, 12, 18, 24 with Iowa are plotted.
Note the staff plot is a 3-dimensional model: users have option to change their viewing
perspectives and highlight a chosen correlation strand. Details see Section 5.2.2.
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(2) Layer. The staff plot contains several identical layers of guidelines, with each layer con-

sisting of a circle and several horizontal lines. Guideline layers are colored with a subtle

blue-to-black color gradient, representing different lags from lag-0 to the last lag. Since

correlations for lags 0, 1, 3, 6, 12, 18, 24 are provided, the staff plot displayed contains

7 layers. Each layer is a s-CorrPlot for the correlations of that lag.

(3) Guideline. Horizontal guidelines indicate different significant levels for correlations

with the pivot component. From the poles to the equator, the staff plot includes guide-

lines for ±0.8, ±0.6, and ±0.4 correlations, with the northern hemisphere representing

positive correlations. These guidelines resemble music staves, the plot’s namesake.

(4) Strand. Strands of beads of different colors are scattered across the plot. Each strand

represents the lagged correlations between a pair of components: at least one of these

components is always the pivot component.8 For comparison, in Figure 5.19, it is

represent by a column of colored cells. Note again, the strand for self-correlations, i.e.,

the lagged correlation of the pivot component with itself, always starts at the north

pole.

(5) Bead. Each bead represents the correlation of a specific lag for a given pair of variables.

Readers can tell which variable pair each bead represents from the color and themouse-

over tooltip. Beads on each strand are equally spaced vertically, since they represent

different lags and are therefore embedded in different layers, by (2). The first bead of

each strand, representing the lag-0 correlation, is larger than the rest.

8 Mouse hover each strand gives the name of the other component.
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Readers can screen bivariate dependence of a high-dimensional time series by notic-

ing the shape of each strand and the locations of the beads on the strand. Figure 5.8 in

addition contains some examples of possible shapes and their statistical interpretations.

(1) Strand location. Strands starting from higher latitudes have higher correlations with

the pivot component. The guidelines provide a convenient visual tool to sift out sig-

nificantly correlated pairs. In the example, we can quickly tell that Kentucky (KY) and

Mississippi (MS) have lag-0 correlations with Iowa (ρ0 > .9); Louisiana (LA) has a mod-

erate lag-0 correlation with Iowa (ρ0 ≈ .7); and Connecticut (CT), Massachusetts (MA),

and Hawaii (HI) all have weak lag-0 correlations with Iowa (ρ0 < .4). Similarly, by inter-

actively exploring the 3-dimensional model, we can read the correlations of later lags

off the locations of the smaller beads.

(2) Strand length. The length of each strand illustrates how fast the correlations between

the pivot component and that variable decay along the lags chosen. We can tell from

its long and straight strand that Massachusetts (MA) has not only a relatively weak lag-0

correlation with Iowa but also the fastest correlation decay along the lags: its lag-24 cor-

relation with Iowa is close to 0. The Louisiana (LA) correlations with Iowa, however, have

a very different profile; its short and bended strand shows their correlations actually

increase along early lags (lags 1, 3, 6) before eventually decaying slowly (ρ0 ≈ ρ24 ≈ .7).

(3) Outlier. Outliers quickly emerge from the plot. The strand for Hawaii (HI) correlations

with Iowa stands apart from the rest. Not only can we quickly identify the outliers

by correlation levels, we can also visually identify variables with irregular correlation

decaying patterns by noticing the unusual shapes of the strands. Louisiana (LA) is a

such example.
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Figure 5.9 Staff plots for
correlation screening.
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Note. Figure 5.9 continued.
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The strength of the staff plot is its compactness. Figure 5.9 gives the complete guide

to the lagged correlation dynamics of the unemployment rates of 50 U.S. states. Readers

can follow the tutorial of Figure 5.8 and glean a wealth of information (about bivariate

dependence, correlation decay patterns, as well as clusters and outliers) by simply studying

these intuitive plots.

Note. Figure 5.9 continued.
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5.3. ORBIT PLOT

In the previous section on the staff plot, we have demonstrated and made use of the canon-

ical isomorphism between the correlation of a pair of univariables and their phasal differ-

Figure 5.10 Dynamic or-
bit plot.

Note. (a) Business cycles are of pivotal importance in macroeconomics. (b) The orbit plot
proposed illustrates nuanced dynamic harmonic relations of high-dimensional time series.
(c) Additional complications are added to facilitate macroeconomic analyses, see Section
5.3.1 for details.
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ence. As a consequence, we can further deduce from the fact that lagged correlations can

alternatively be faithfully represented by phasal changes of time series. This awareness of

changes in phasal differences is of critical importance inmacroeconomics, in particular the

study of business cycles, as Figure 5.10(a) illustrates, where phasal changes of economic

indicators can often lead to impactful changes of economic policies and investment deci-

sions. Yet in spite of their intuitive affinity to harmonic analyses, practitioners nevertheless

rely on observing time series line plots, often component by component, to detect peaks

and troughs, expansions and contractions, and use these single-dimensional fragments to

construct vague mental depictions of these high-dimensional time series, sharpened only

by trial and error experiences.

We take the extra step and make explicit the phasal changes of time series in the new or-

bit plot. Like the companion staff plot just introduced, the orbit plot materializes a simple

motivational idea: we want to make apparent the dynamic phasal transitions of a high-

dimensional time series. Intuitively, the orbit plot can be viewed as the HHT in the limit,

where the time series itself is interpreted as an empirical mode. Rather than introspec-

tively decomposing a time series into dubious intrinsic modes (see theoretical discussions

in Chapter 3), we turn outward and depict all such empirical modes, now phenomenolog-

ically observed, on a single dynamic plot.

Some words about terminology before we start. Since terms used to describe macroeco-

nomic time series features—such as, expansions and contractions, peaks and troughs,—

have become common parlance, we use them without further explanations. Readers can

turn to standard textbooks for reference, e.g., Abel et al. (2016) or Mankiw (2015). To avoid

confusions, however, we use these macroeconomic descriptors exclusively to characterize
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the underlying business cycles. Since indicators such as the unemployment rates are coun-

tercyclical, these terms don’t describe their time series features.

5.3.1 CONSTRUCTION

The construction of the orbit plot is analogous to the HHT (see Chapter 3). Our goal is to

infer the phases of a time series from its levels observed. Since the concept of phases can

only be suitably applied to time series with smooth sinusoid-like shapes, before we start the

construction procedures, some regularization procedures might be needed to denoise the

time series, depending on the scientific content and the measurement method of the time

series: in general, time series rapidly transitioning between local extrema on a line plot

are candidates for additional regularization procedures. Some simple regularization ideas

include: averagingmultiple measurements; smooth curve fitting; and changing observation

frequencies. Since regularization is not the focus of the paper, we henceforth assume the

time series under investigation have been denoised and have well-behaved wave-like forms.

Like the HHT, the construction procedures for the orbit plot are natural but somewhat

cumbersome to describe—Figure 5.10 should give readers a straightforward depiction of

the motivational ideas. Take any component x ≡ xi· ∈ RT = (x1, x2, . . . , xT) of an n-

dimensional time series x1·, x2·, . . . , xn·, each component with length T. Suffice to give

the map h : RT → ST–2, which in general is not an isomorphism. We start with a naive

piecewise linear mapping: this corresponds to the piecewise uniform angular motion in the

orbit plot; that is, all components orbit in the same direction (say counterclockwise) with

step-function velocities jumping only at phases 0 and π. Using the notations introduced

in Section 3.2.1, let {x}+ be the set of local maxima of x and {x}–, its local minima. Since
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we use arccos as the isomorphic map between the two topologies in the staff plot, declare

h : {x}+ 7→ 0 and h : {x}– 7→ π, that is, points in {x}+ are mapped to 0—strictly speaking,

#{x}+ copies of 0—under h and {x}–, π. We now only need to linearly interpolate the images

of x for points other than 0 and π: the procedure is as follows.

It is clear all other points {xi}/{x}± lie either between a local maximum (on its left) and a

local minimum (on its right) or vice versa. Note the end points of the line plot at 0 and T are

by construction extrema: since this is an artificial fact by construction and does not yield

meaningful physical interpretation (again like what they are in the HHT), we in practice

drop a couple of cycles at the beginning and the end of a time series to effectively give

the dynamic orbit plot time to boot up and wind down. Let xi and xj, j > i + 1) be an

ordered pair of adjacent local maximum (i.e., hxi = 0) and local minimum (hxj = π), we

then have hxp =
p–i
j–i π, i < p < j. Similarly, if we instead have hxi = π and hxj = 0, define

hxp = π +
p–i
j–i π, i < p < j, where we use the spherical topology property 2nπ = 0. This

completes the map h: readers can verify all points of x have been assigned an image on a

circle.

5.3.2 EXAMPLES

Figures 5.11 and 5.12 continue with the foregoing example of unemployment rates. The

center sphere in red is the federal civilian unemployment rate (UR) and the spheres or-

biting it are the 50 state unemployment rates. We draw additional guidelines between the

federal sphere and state spheres to help readers visualize how strong the tidal locks be-

tween these pairs are—viz., how many consecutive months each pair has been in phase

locked positions. Instead of summarizing intricate dynamics with correlations as we do in
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the staff plot, the orbit plot provides animated representations of how these time series

interact month by month. It provides insights into the following questions that existing

graphic tools and the staff plot cannot answer, questions nevertheless of great importance

Figure 5.11 Orbit plots
and U.S. business cycles.

Note. U.S. Bureau of Labor Statistics, Civilian Unemployment Rate [UNRATE], retrieved
from FRED, Federal Reserve Bank of St. Louis; fred.stlouisfed.org/series/UNRATE,
June 18, 2018. Shaded areas indicate U.S. recessions. Details see Figure 5.12.
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to macroeconomic policy makers. Since economic recessions are a well-researched subject,

we use established facts about recessions as a benchmark to validate the orbit plot: we will

demonstrate how key features of recessions are effectively depicted in the plot before mov-

ing on to a more stylized example.

(1) Expansion and contraction. All spheres in the upper cylinder represent economies in ex-

pansion (decreasing unemployment) and the rest in the lower cylinder are economies in

contraction. The plot shows how long and in what sequential orders economies tran-

sition between the two states. The 2009 recession stands out from the rest in that

all economies are clustered in the fourth quadrant in Figure 5.12: it suggests that

economies have become more integrated since 1980 and the 2009 recession is more

widespread than the rest. This is also reflected in the unusually long periods of tidal-

locked rotations: we observe at the end of the recession, economies have been tidally

locked for 5 and half years, comparing to 3 years in 1980, 2 years in 1982, 2 years in

1992, and 1 year in 2001.

(2) Procyclical and anticyclical. The plot gives a vivid recount of how each economy behaves

in each business cycle by noticing its relative phase with regard to other states. Take

the 2009 recession for example, we see industrial states like Indiana (IN) move into the

recession before the overall U.S. economy but states with heavy financial sectors like

Connecticut (CT) drag in recovery, confirming the fact the 2009 recession is the result

of the financial crisis of 2007–2008.

(3) Classification of recessions. Classification of a general economic recession is a difficult

question since each state behaves differently: The Federal Reserve frequently revises its

official definitions of recessional periods (shown in gray area in Figures 5.11). There
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is a natural definition of recession from the orbit plot: if and only if we see economies

are strongly tidal locks in the lower quadrants, the overall U.S. economy is in a reces-

sion. There is a one-to-one mapping between the occurrences of these patterns and the

recessions officially declared. In fact, Figure 5.12 shows the official declaration of the

ending of a recession precisely coincides with that prescribed by the orbit plot: note

they do not always coincide with the peaks of federal unemployment rate. The only ex-

ception is the 1991 recession: the Fed declares the recession ends in February 1991 but

accordingly to the orbit plot, most tidally locked economies do not begin the recovery

process until August 1992, a year and a half later. This might be political compromise:

the reunification of Germany in October, 1990, the end of Gulf War in February 1991,

and events leading up to the official dissolution of the Soviet Union in December 1991,

all make it the perfect timing for recovery.

Figures 5.13 to 5.16 provide an in-depth case study on how to use the orbit plot to

examine the dynamic relations of a given component of a high-dimensional time series

in situ, that is, with respect to other components of the time series. Taking on the role

of a stock analyst of, say Apple Inc. (AAPL), we want to understand precisely how AAPL

fluctuates with respect to other stocks in the market, similar to the exercise we did for

the unemployment rates of 50 states. Standard portfolio theory shows stock returns are

correlated with the return of the market portfolio. Figure 5.13(b) documents the intricate

dynamic relations. We have introduced the phenomenon of tidal locking and exhibited its

prevalence in S&P 500 stocks in Section 5.1.2. The plot overlays the tidally locked segments

of all 511 stocks with AAPL: there are periods when a large subset of stocks are persistently

tidally locked with AAPL (e.g., around Period 800, in April 2016) and there are periods when

almost none does (e.g., around Period 300, in March 2014). Panel (c) shows this cannot be
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simply explained away with market volatility. We plot the market volatility levels in gray so

that the gray region is wider when the market volatility is high; we similarly plot the tidal

lock strength in red so that the red region is wider when the time series are weakly locked.

We would expect to observe weak tidal locks when the market volatility is high and vice

versa but this is seldom the case. Our task is then to explore their precise relations with

the orbit plot. Since the orbit plot is dynamic, to facilitate further discussions, let’s take

snapshot plots (see Figure 5.14) from four periods indicated in Figure 5.13: (1) Period

139: August 26, 2013; (2) Period 285: March 27, 2014; (3) Period 799: April 11, 2016;

and (4) Period 1201: November 10, 2017. These particular periods are chosen because at

these four representative time slices, the animated orbit plot exhibits four distinct visual

patterns, which cannot be explained through fundamental analyses or event studies.

Since the orbit plot is a 3-dimensional model, without accessing the interactive tools

needed for exploring 3-dimensional models, these static snapshots are difficult to read

in print. To alleviate the problem, Figure 5.15 lists out the top tidally locked stocks for

each of the snapshots, except for Period (2) when all stocks are weakly tidally locked with

AAPL. For comparison, Figure 5.16 lists out the overall top tidally locked stocks. To further

provide the context of these plot, Figure 5.17 provides the top news feed for AAPL from

the Bloomberg Terminal on or shortly before these dates and Figure 5.18 provides the

corresponding top news on the overall economy.

(1) Period 139: August 26, 2013. After a period of jittery sideway movements, AAPL climbs

to phase-0 but most of its top tidally locked stocks are in the second and the third quad-

rants, counting clockwise. Apple is testing components for iPhone 5S due to release in

a month, a small annual refresh to its predecessor. Ballmer is leaving Microsoft in a
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year. U.S. economy continues with the slow recovery from the financial crisis 5 years

ago.

(2) Period 285: March 27, 2014. Apple sideway movement continues. Apple fights with U.S.

over encryption and iPhnone sales lose momentum as the market pushes for low-cost

smart phones. U.S. economy expands more than expect. AAPL phasally detaches from

other stocks.

(3) Period 799: April 11, 2016. Microsoft Office for iPad is released and Apple increases

battery orders. Obama presides over steady recovery. AAPL rotates in sync with its top

tidally locked stocks.

(4) Period 1201: November 10, 2017. Apple iPhone X was released a week earlier: market

reception is warm. US economy rebounds under Trump. AAPL becomes tidally locked

with a wide array of stocks.

Analogous to the previous example on unemployment rates, analysts can use the or-

bit plot to perform macroeconomic studies on AAPL. The orbit plot, in essence, offers a

first graphical tool to allow analysts to study the business cycles of AAPL vis-à-vis those of

the market. This consists of various aspects of macroeconomic analysis, as we carried out

before in the previous example. For example, a typical stock analysis question asks how

much of AAPL’s gain during a certain period is due to the overall bullish market. Without

a scientific tool to study the phenomenon of tidal locking, the answer is a judgment call,

resting on an analyst’s ability sensing the market sentiments from various fundamental

indicators, technical signals, and words on the street. We can analogously propose the nat-

ural criterion for market growth—this plays an important role later in the discussion of

the beta of a stock—if and only if we observe a cluster of tidally locked stocks in the fourth
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quadrant. This is exactly what we observe in Snapshot (3). By highlighting certain stocks

for comparison (what practitioners call “comps”), analysts can further customize the orbit

plot and use it to answer comparative questions like how AAPL performs with respect to its

comps.

This in effect gives a dynamic representation of the beta of AAPL. In finance, the expected

stock return (Er) in excess of the risk-free rate of interest rf, the “risk premium,” is postulated

to be

Er – rf = β(Erm – rf),

where Erm is the expected market return. This is widely celebrated as the capital asset pric-

ing model (CAPM).9 In the U.S., published betas typically use a stock market index such

as the S&P500 as the market portfolio and are reported as objective measurements along

with fundamental variables like Open Price, 52-Week Range, Earnings Per Share (EPS), and

others.10 The regression coefficient, β, reflects the bivariate dependence of the stock return

and the market return, is often taken as the risk measure and called the reward-to-risk ra-

tio. Comparing to a single number reported, the orbit plot gives animated representations

of how β changes overtime. In Snapshot (3), we see AAPL is of the same phase with tightly

9 You can control for more factors, e.g., market capitalization (SMB, small minus big),
book-to-market ratio (HML, high minus low), profitability (RMW, robust minus week), in-
vestment (CMA, conservative minus aggressive), and momentum (MOM), in the regression
but most reported betas do not. In any case, it’s tangent to the point that factor loading
are dynamic.
10 These calculated betas vary widely from venue and venue: For example, the beta for AAPL
is reported to be 1.01 (Marketwatch), 1.02 (Nasdaq), 1.097 (Investopedia), 1.14 (Yahoo
Finance), 1.15 (Reuters), 1.15 (CNBC), FT (1.1521), and 1.23 (MSN), on July 17, 2018.
Since the convention for calculating beta is not clear, we refrain from further discussions
on the effects of choosing different frequencies and lengths for the returns as well as the
distinction between equity and asset betas.
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tidally locked stocks: this is evidence for an increased β. Contrary, in Snapshot (1), we see

AAPL is out of phase with tidally locked stocks: this is evidence for an decreased β. The or-

bit plot demonstrates clearly that β of a stock varies widely over time and cautions against

a common practice using the beta of a stock as the one-for-all measurement of its rela-

tive risk to the market. These already insightful conclusions are drawn from our glancing

over four snapshots, observant readers can surely make better use of the dynamic plot on

screen, a 1258-frame animation for a 512-dimensional time series, especially after paired

with existing stock investment tools.
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Figure 5.12 Closeup orbit
plots of unemployment
rates.

Note. Snapshots of animated orbit plot of monthly unemployment rates of 50 states from
January 1976 to May 2018, time stamps indicated in Figure 5.11.
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Figure 5.13 Dynamic tidal
locking of S&P stocks.

Note. Daily closing price of S&P 500 Index stocks from February 8, 2013 to February 7,
2018, CRSP. (a) Tidally locked periods of AAPL and first 10 stocks, monthly bins indicated;
(b) tidally locked periods of AAPL and all other S&P stocks; and (c) market volatility and
tidal strength (wider gray area for higher volatility, narrower red area for stronger tidal
influence).
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Figure 5.14 Closeup orbit
plots of S&P stocks.

Note. Snapshots of animated orbit plot of AAPL and S&P stocks, time stamps indicated in
Figure 5.13. Side views shown in bottom row. Top 25 tidally locked stocks for each slice
profiled in Figure 5.15.
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Figure 5.15 Lists of top
tidally locked stocks for
given slices

0100-0999 Agriculture, Forestry and Fishing
1000-1499 Mining
1500-1799 Construction

2000-3999 Manufacturing
4000-4999 Transportation, Communications,
Electric, Gas and Sanitary service

5000-5199 Wholesale Trade
5200-5999 Retail Trade
6000-6799 Finance, Insurance and Real Estate

7000-8999 Services
9100-9729 Public Administration
1800-1999 not used

Xcel Energy Inc. is a utility holding
company based in Minneapolis,
Minnesota, serving more than 3.3
million electric customers and 1.8
million natural gas customers i…

Apache Corporation is an Ameri-
can petroleum and natural gas
exploration and production com-
pany incorporated in Delaware
and headquartered in Houston.

C.H. Robinson is a Fortune 500
provider of multimodal trans-
portation services and third-party
logistics. The company offers
freight transportation, transport…

Hasbro, Inc. is an American multi-
national toy and board game com-
pany. It is the largest toy maker in
the world in terms of stock market
value, and third largest with rev…

Intuit Inc. is a business and finan-
cial software company that devel-
ops and sells financial, account-
ing, and tax preparation software
and related services for small…

Lam Research Corporation is an
American corporation that en-
gages in the design, manufacture,
marketing, and service of semi-
conductor processing equipme…

Mohawk Industries is an American
flooring manufacturer based in
Calhoun, Georgia, United States.
Mohawk produces floor covering
products for residential and co…

Walmart Inc. is an American multi-
national retail corporation that
operates a chain of hypermarkets,
discount department stores, and
grocery stores.

Microchip Technology is an Ameri-
can manufacturer of microcon-
troller, memory and analog
semiconductors.

Alexandria Real Estate Equities is a
major United States real estate
investment trust.

Mastercard Incorporated is an
American multinational financial
services corporation headquar-
tered in the Mastercard In-
ternational Global Headquarter…

Zoetis, Inc. is the world's largest
producer of medicine and vaccina-
tions for pets and livestock.

Nucor Corporation is a producer of
steel and related products head-
quartered in Charlotte, North Car-
olina. It is the largest steel produc-
er in the United States of Ameri…

Universal Health Services is an
American Fortune 500 company
based in King of Prussia, Pennsyl-
vania. It is one of the largest hos-
pital management companies i…

eBay Inc. is a multinational e-com-
merce corporation based in San
Jose, California that facilitates
consumer-to-consumer and busi-
ness-to-consumer sales through…

CBOE Global Markets is an Ameri-
can company that owns the Chica-
go Board Options Exchange and
the stock exchange operator BATS
Global Markets

PerkinElmer, Inc., is an American
multinational corporation focused
in the business areas of human
and environmental health.

Lennar Corporation is a home con-
struction and real estate company
based in Miami, Florida. In 2017
the company was the largest
home construction company in…

CME Group Inc. is an American
financial market company operat-
ing an options and futures ex-
change. It owns and operates
large derivatives and futures ex-…

Marsh & McLennan Companies,
Inc. is a global professional ser-
vices firm, headquartered in New
York City with businesses in insur-
ance brokerage, risk manage-…

Newfield Exploration Company is
a petroleum, natural gas, and nat-
ural gas liquids exploration and
production company organized in
Delaware and headquartered in…

Walgreens Boots Alliance, Inc. is
an American holding company
headquartered in Deerfield, Illi-
nois that owns Walgreens, Boots,
and a number of pharmaceutic…

Lincoln National Corporation is a
Fortune 250 American holding
company, which operates multiple
insurance and investment man-
agement businesses through s…

Cisco Systems, Inc. is an American
multinational technology con-
glomerate headquartered in San
Jose, California, in the center of
Silicon Valley, that develops, m…

Snap-on Incorporated is a design-
er, manufacturer and marketer of
high-end tools and equipment for
professional use in the transporta-
tion industry including the auto…

Berkshire Hathaway Inc. is an
American multinational conglom-
erate holding company headquar-
tered in Omaha, Nebraska, United
States.

Verisk Analytics, Inc. is an Ameri-
can data analytics and risk assess-
ment firm based in Jersey City,
New Jersey, United States, serving
customers worldwide in insur-…

Nike, Inc. is an American multina-
tional corporation that is engaged
in the design, development, man-
ufacturing, and worldwide mar-
keting and sales of footwear, ap…

Cognizant is a multinational cor-
poration that provides IT services,
including digital, technology, con-
sulting, and operations services. It
is headquartered in Teaneck, N…

Invesco Ltd. is an American inde-
pendent investment management
company that is headquartered in
Atlanta, Georgia, United States,
and has branch offices in 20…

American Electric Power is a major
investor-owned electric utility in
the United States of America, de-
livering electricity to more than
five million customers in 11…

Carnival Corporation & plc is a
United States-based cruise compa-
ny and the world's largest travel
leisure company, with a combined
fleet of over 100 vessels across …

Delta Air Lines, Inc., commonly
referred to as Delta, is a major
American airline, with its head-
quarters and largest hub at Harts-
field–Jackson Atlanta In-…

SunTrust Banks, Inc., is an Ameri-
can bank holding company. The
largest subsidiary is SunTrust
Bank

Warner Media, LLC, doing busi-
ness as WarnerMedia, and previ-
ously known as Time Warner Inc.,
is an American multinational
mass media and entertainment…

Franklin Resources Inc. is an
American holding company that,
together with its subsidiaries, is
referred to as Franklin Templeton
Investments; it is a global inves…

Agilent Technologies is an Ameri-
can public research, development
and manufacturing company es-
tablished in 1999 as a spin-off
from Hewlett-Packard. The resul…

Akamai Technologies, Inc. is an
American content delivery net-
work and cloud service provider
headquartered in Cambridge,
Massachusetts, in the United…

Albemarle Corporation is a chemi-
cal company with corporate head-
quarters in Charlotte, North Caroli-
na. It is a specialty chemical man-
ufacturing enterprise.

Anthem, Inc. is an American
health insurance company found-
ed in the 1940s, prior to 2014
known as WellPoint, Inc. It is the
largest for-profit managed healt…

Caterpillar Inc. is an American For-
tune 100 corporation which de-
signs, develops, engineers, manu-
factures, markets and sells ma-
chinery, engines, financial prod…

d

Celgene Corporation is an Ameri-
can biotechnology company that
discovers, develops and commer-
cializes medicines for cancer and
inflammatory disorders.

Cisco Systems, Inc. is an American
multinational technology con-
glomerate headquartered in San
Jose, California, in the center of
Silicon Valley, that develops, m…

f d ll k

The Walt Disney Company, com-
monly known as Disney, is an
American diversified multination-
al mass media and entertainment
conglomerate, headquartered a…
h l d

Dover Corporation is an American
conglomerate manufacturer of
industrial products. Founded in
1955 in New York City, Dover is
now based in Downers Grove, Il…

d l h

Note. Company blurbs retrieved from main entries on Wikipedia on June 19, 2018, with
minor editorial changes. Corresponding orbit plots shown in Figure 5.14.
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Figure 5.16 Lists of top
tidally locked stocks.

0100-0999 Agriculture, Forestry and Fishing
1000-1499 Mining
1500-1799 Construction

2000-3999 Manufacturing
4000-4999 Transportation, Communications,
Electric, Gas and Sanitary service

5000-5199 Wholesale Trade
5200-5999 Retail Trade
6000-6799 Finance, Insurance and Real Estate

7000-8999 Services
9100-9729 Public Administration
1800-1999 not used

CBOE Global Markets is an Ameri-
can company that owns the Chica-
go Board Options Exchange and
the stock exchange operator BATS
Global Markets

Newfield Exploration Company is
a petroleum, natural gas, and nat-
ural gas liquids exploration and
production company organized in
Delaware and headquartered in…

Global Payments Inc. is an Ameri-
can company providing financial
technology services globally.
headquartered in Atlanta, its stock
is a component of the S&P 500…

PerkinElmer, Inc., is an American
multinational corporation focused
in the business areas of human
and environmental health.

Cisco Systems, Inc. is an American
multinational technology con-
glomerate headquartered in San
Jose, California, in the center of
Silicon Valley, that develops, m…

The Colgate-Palmolive Company is
an American worldwide consumer
products company focused on the
production, distribution and pro-
vision of household, health care…

Skyworks Solutions, Inc. is an
American semiconductor compa-
ny headquartered in Woburn,
Massachusetts, United States. Sky-
works manufactures semicondu…

Lennar Corporation is a home con-
struction and real estate company
based in Miami, Florida. In 2017
the company was the largest
home construction company in…

Alexion Pharmaceuticals Inc. is an
American pharmaceutical compa-
ny best known for its develop-
ment of Soliris, a drug used to
treat the rare disorders atypical…

CME Group Inc. is an American
financial market company operat-
ing an options and futures ex-
change. It owns and operates
large derivatives and futures ex-…

Ecolab Inc., headquartered in St.
Paul, Minnesota, is an American
global provider of water, hygiene
and energy technologies and ser-
vices to the food, energy, health…

Bank of America Corporation is an
American multinational financial
services company headquartered
in Charlotte, North Carolina. It is
ranked 2nd on the list of largest…

Akamai Technologies, Inc. is an
American content delivery net-
work and cloud service provider
headquartered in Cambridge,
Massachusetts, in the United…

Alexandria Real Estate Equities is a
major United States real estate
investment trust.

Alaska Air Group Inc. is an airline
holding company based in SeaTac,
Washington. It owns two certificat-
ed airlines operating in the United
States: Alaska Airlines and Hori-…

American Tower Corporation is a
publicly held company, owner and
operator of wireless and broadcast
communications infrastructure in
several countries. American Tow…

IDEXX Laboratories, Inc. is an
American multinational corpora-
tion on the S&P 500 and NASDAQ-
100 indices engaged in the devel-
opment, manufacture, and distr…

Invesco Ltd. is an American inde-
pendent investment management
company that is headquartered in
Atlanta, Georgia, United States,
and has branch offices in 20…

JPMorgan Chase & Co. is an Amer-
ican multinational investment
bank and financial services com-
pany headquartered in New York
City.

UnitedHealth Group Inc. is an
American for-profit managed
health care company based in
Minnetonka, Minnesota. It is 5th
in the United States on the For-…

CBOE Global Markets is an Ameri-
can company that owns the Chica-
go Board Options Exchange and
the stock exchange operator BATS
Global Markets

Global Payments Inc. is an Ameri-
can company providing financial
technology services globally.
headquartered in Atlanta, its stock
is a component of the S&P 500…

Newfield Exploration Company is
a petroleum, natural gas, and nat-
ural gas liquids exploration and
production company organized in
Delaware and headquartered in…

PerkinElmer, Inc., is an American
multinational corporation focused
in the business areas of human
and environmental health.

Lennar Corporation is a home con-
struction and real estate company
based in Miami, Florida. In 2017
the company was the largest
home construction company in…

JPMorgan Chase & Co. is an Amer-
ican multinational investment
bank and financial services com-
pany headquartered in New York
City.

The Colgate-Palmolive Company is
an American worldwide consumer
products company focused on the
production, distribution and pro-
vision of household, health care…

CME Group Inc. is an American
financial market company operat-
ing an options and futures ex-
change. It owns and operates
large derivatives and futures ex-…

Marsh & McLennan Companies,
Inc. is a global professional ser-
vices firm, headquartered in New
York City with businesses in insur-
ance brokerage, risk manage-…

Alexion Pharmaceuticals Inc. is an
American pharmaceutical compa-
ny best known for its develop-
ment of Soliris, a drug used to
treat the rare disorders atypical…

A. O. Smith Corporation is an
American manufacturer of both
residential and commercial water
heaters and boilers. It is the
largest manufacturer and mar-…
k f h h

Alexandria Real Estate Equities is a
major United States real estate
investment trust.

Northrop Grumman Corporation is
an American global aerospace and
defense technology company
formed by Northrop's 1994 pur-
chase of Grumman. The compa…

h fif h l d f

NetApp, Inc. is a hybrid cloud data
services company headquartered
in Sunnyvale, California. It has
ranked in the Fortune 500 since
2012.

American Tower Corporation is a
publicly held company, owner and
operator of wireless and broadcast
communications infrastructure in
several countries. American Tow…

h d d

Chipotle Mexican Grill, Inc. is an
American chain of fast casual
restaurants in the United States,
United Kingdom, Canada, Ger-
many, and France, specializing i…

Leggett & Platt, based in Carthage,
Missouri, is a diversified manufac-
turer that designs and produces
various engineemining compo-
nents and products.

Zimmer Biomet is a publicly trad-
ed medical device company. It
was founded in 1927 to produce
aluminum splints. The firm is
headquartered in Warsaw, Indi-…

Akamai Technologies, Inc. is an
American content delivery net-
work and cloud service provider
headquartered in Cambridge,
Massachusetts, in the United…

Expedia Group is an American
global travel technology company.
Its websites, which are primarily
travel fare aggregators and travel
metasearch engines.

Note. Company blurbs retrieved from main entries on Wikipedia on June 19, 2018, with
minor editorial changes.
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Figure 5.17 News feed for
AAPL.
Cheaper iPhone seeks to retain core values FTI
IPhone Trade-In Program May Start Next Month: 9toBFW
Apple looks to build market share with the cheaper iFTI
Apple’s iWork for iCloud Service May Be Limited: CNBFW
Apple Suppliers Including CRUS, OVTI, AVGO GainBFW
Apple Said to Be Readying ‘Graphite’ IPhone 5S:DickBFW
Top Tech Analyst: This Week Will Offer an 'Early Look'PRN
Apple Top Holding Among Hedge Funds, SurpassingBFW
U.S. TMT Pre-Market: DDD, SSYS New Buy at Citi; VMBFW
Microsoft New CEO Could Tap $77 Billion of Cash forBI
Steve Ballmer’s Exit May Be Another Canary in CoalBI
Pandora Scraps Mobile Limit on $15 Billion Radio AdBI
Microsoft New CEO May Cede Consumer to Apple, FoBI
DoCoMo Rises on Speculation Carrier to Release AppBN
SEC Proposal, CFTC Rules, BB&T, Monte Paschi, AMR:BN
Apple, Google, Bosch, CIT Group: Intellectual PropertBN
Sony Seen Growing Smartphone Profits Amid SlowerBFW
Bloomberg Industries Most Read: E-Cigarette Model;BI
Lenovo Takes Page From Apple in Chasing Samsung iBN
Ballmer resignation unlikely to quell unease over MiFTI
Apple Said Tested 64-Bit Chips for iPhone 5S: 9to5MBFW
Silicon Valley’s Older Workers Fear Discrimination: SBFW
Global corporate bond issuance at lowest level in fiveFTI
Rewards await Corporate America if it's canny with caFTI
Cheaper local mobiles beat Apple,Samsung sales in IPTI
Here's What Steve Ballmer Didn't Get About the TablWPT
BARRON’S ROUNDUP: Puerto Rico’s Debt Woes, MicrBFW
Paul Krugman: On The Symmetry Between MicrosoftNYT
Mobile Internet Innovation Highlights Macworld; MaPRN
CEO Ballmer Exits After Failing to Take Microsoft BeyoBN
Ballmer will leave behind an unfinished agenda FTI
Why Jobs worked as a manager but not in a movieFTI
Nasdaq defends handling of longest outage in its hisFTI
Financial, Research Information Not Used In Apple, SBLW
Petrobras Outspends Exxon Researching Next Oil FroBN
At Apple Inc., birth of iPhone 5S, 5C set to herald deaFEX
Microsoft's 9% Enterprise Growth Suggests M&A PickBI
Microsoft's Next CEO Needs to Shift Focus as PCs DieBI
Ballmer to leave Microsoft within a year FTI
US proposes shorter e-books injunction for ApplePTI
Apple Duels With U.S. Over E-Book Price-Fixing RemBN
Nasdaq halt puts pressure on Greifeld FTI
Microsoft Needs a Tech Visionary to Jump-Start GrowBI
Ballmer Retirement Announcement a Surprise, GiveBI
DOJ Proposes Shorter E-books Injunction for AppleAPW
Even Cord Cutters Will Have to Pay the Cable Bill BN
Apple Nears Golden Cross, Monsanto Forms Death CrBFW
Internet launches fightback against state snoopersFTI
Ballmer’s Exit Leaves Microsoft Searching for Hero inBN
Ballmer's Smartphone Misdial Put Microsoft BehindBI
Apple Objects to U.S. Revised E-Books Remedy PropoBN
Why Steve Jobs worked as a manager but not in a mFTI
Mobile Handset Makers: The Eight Most Critical TheBI
Apple, Samsung Win Appeals Ruling to Keep FinanciBN
*APPLE AND SAMSUNG DON’T HAVE TO REVEAL SALEBFW
Windows Runs on 90% of Notebooks as Ballmer ExitBI
High-End, Low-End Unit Gulf a Key Handset Theme:BI
Microsoft Windows 3.6% of Smartphones as BallmerBI
U.S. Files Revised Proposal for Apple E-Books Court OBFW
Microsoft's Ballmer Failed to Capitalize on SmartphoBI
Microsoft Total Return Under Ballmer Trails S&P 500BFW
PANDORA STREET WRAP: Analysts Negative on Ad ReBFW
Google Buys Wearable Technology Patents From TaiwBN
P: Beat Our Forecast On Strong Results, Guidance AhABF
U.S. TMT Pre-Market: P 3Q View Misses; Jefferies UpBFW

Apple Fails To Knock Out Ringer-Silencing Patent onBLW
Andy Grove and the line between 'good' and 'bad' feFTI
PC Shipments 60.6m in 1Q, Down 11.5% Y/y, IDC SaBFW
The Apple Watch One Year Later: Success or Dud?TST
Apple, FBI, Encryption: Does Safety Mean No SecretBN
Apple (AAPL) Stock Climbs as Barron's Sees 40% UpsiTST
Apple IPhone SE Expands Addressable Market by 3BI
IPhone Loses Momentum as Growth Shifts to Low-EnBI
Israel to Levy New Taxes on Google, Facebook in PolicBN
Mississippi Can Resume Google Investigation; CriticsWPT
[Delayed] Cutting Apple Estimates And Target On LonBTG
[Delayed] Smartphone Replacement Cycles Are LengtBTG
U.S. vs. Apple: New Battles in NY, MassachusettsBLC
MAZ Launches Home: Connected TV Platform PRN
It's Time the World Learned How to Say H-U-A-W-E-I:BBO
Moscovici Says Google, Facebook, Amazon, Must PayBFW
The Top 10 Songs And Albums on the ITunes StoreAPW
U.S. EQUITY PREVIEW: AAPL, BSX, CLBS, DIS, OI, TOL,BFW
Streaming Lifts Music Sales Higher for First Time in TSYH
U.S. Presses Bid to Force Apple to Unlock iPhone in NNYT
Op-Ed Contributors: Why Apple’s Stand Against the F.NYT
BARRON’S ROUNDUP: Gross Calls for Rate Rise; DisnBFW
Why Apple's Stand Against the F.B.I. Hurts Its Own CNYT
Brooklyn Case Takes Front Seat in Apple Encryption FiAPW
Justice Dept. Says It Still Wants to Force Apple to UnlWPT
US Judge Ordered Apple to Help Retrieve Data in BoAPW
Apple’s Fight With U.S. Over Privacy Enters a New RoBN
Gadgetwise: How to Switch to iPhone From Android:NYT
Apple Resisting a February IPhone Search Order in MBN
Apple iPhone SE, iPad Pro and new Watch buying guFEX
Judge Orders Apple to Assist FBI in Massachusetts CaBFW
Apple, FBI headed for another battle over drug dealeDPA
US keeps Apple encryption battle alive in drug casePTI
US pushes Apple to unlock iPhone used in New YorkFTI
A real-world solution to the tax repatriation ruckusFTI
Apple’s Fight With U.S. Over Privacy Enters a New RoBN
FastFT: US fight with Apple over privacy continues inFTI
Apple's Fight With U.S. Over Privacy Enters a New RoBN
U.S. Presses Ahead With Appeal in Brooklyn iPhoneBLW
Profitable Share Gain Remains HP's PC Segment MaBI
How Silicon Valley — Not Just Apple — Became ObsesWPT
IPhone Backdoors Would Pose a Threat, French PrivacBN
Apple iPhone SE, iPad Pro and Watch available in IndFEX
United States Software and Information Technology SACQ
Put Away Your Keyboard: It’s Time to Talk to Our ComTEL
Comment: The clampdown on tax inversions is onlyFTI
Tim Bradshaw: Apple iPad Pros New tablets are betteFTI
FBI Continues to Debate Sharing IPhone Hack With AAPW
Why BTIG Is Cutting Apple's Earnings Estimates BLC
Apple Among 10 Cos. That Screen Well for Est. RevisiBFW
Blueshift Research’s PayPal Idea Proposal SFT
FBI Bought Tool to Break Into IPhone Used in TerrorisBN
FBI’s IPhone Hack Doesn’t Work on Newer Models: VBFW
FBI Debates Sharing IPhone Hacking Details With ApAPW
Tech Stocks Dominate List of 53 Cos. W/ Tax Rate ExpBFW
Apple (AAPL) Stock Slumps as BTIG Warns of Longer iTST
Dustin Volz: FBI director Comey says iPhone hack 'doTWT
Some For-the-moment Final Thoughts on Apple, EncrWPT
Free Data Streamed for Consumers by T-Mobile at RisBI
Oversupply, Weak Pricing Squeeze Memory-Chip MaBI
Hard to Say When Apple Tax Case Will End: EU’s VestBFW
Apple Talks Up Services, But It's Still a Device CompaBBO
White House Won’t Support Encryption Bill; FBI TalksWPT
CORRECT: Apple Ests., PT Cut at BTIG on Handset UpBFW
Why One Analyst Thinks Shares of Tech Giant Apple CTST

Microsoft unveils Office reboot FTI
Court Denies Stay to Apple Workers in FLSA CaseBLW
Microsoft boss launches Office for iPad FTI
MORE: Apple to Start Global Sales of New IPhone inBFW
Microsoft to Offer Office for iPad, Maybe a Bit LateNYT
IN JAPANESE MEDIA: New Apple IPhone, SoftBank TaBFW
Microsoft's Office Apps for IPad Ushers in New EraAPW
FTC Approves Final Order in Apple Case Over Kids’ ApBFW
*FED TRADE CMSN: FTC OKS FINAL ORDER IN CASE ABFW
Microsoft opens the door to a world beyond WindowFTI
Microsoft CEO Satya Nadella Unveils Office for IPadBN
Global Mobile Phones: Analyze Industry Earnings BI
BlackBerry, Microsoft-Nokia Key in Handset Earnings:BI
MORE: Microsoft Office for iPad Will Have FreemiumBFW
Microsoft’s Nadella Unveils Office for IPad in Mobile-BN
*MSFT REPORTS DEVICE MANAGEMENT SERVICE FOBFW
Microsoft Shows Office Software for Apple’s IPadBFW
Apple to Start Global Sales of New IPhone in Sept., NBFW
PREVIEW BLACKBERRY 4Q: Focus on Cash Burn, FoxcBFW
*SHARP, JAPAN DISPLAY, LG DISPLAY TO SUPPLY APPBFW
*APPLE TO START GLOBAL SALES OF NEW IPHONE INBFW
BlackBerry Is More Than Just a Handset Vendor, CEOBI
Microsoft, Nokia $7.5 Billion Integration Key to MobiBI
NRG Pursuing Rooftop Solar to Avoid ‘White ElephanBN
Android Dominates Global Market as IOS Fights for PBI
Microsoft Buys Nokia, While Apple, Google Go for SoBI
New Smartphones, Related Hardware Among Top InBI
Low-End Phones, Wearables on Stage at 2014 MobilBI
BlackBerry Leads Connected Cars Google Covets: CorBN
BlackBerry Slump, Microsoft-Nokia Deal Key in HandBI
59% Sales Drop Puts BlackBerry Lowest of Handset PBI
Apple EPS Estimates Rise 0.3%, Trail Sony, BlackBerryBI
Handset Vendor Margins in Focus as Average SellingBI
Canon to Showcase Print and Scan Solutions at MacwBUS
Spotify Said to Plan IPO in 3Q: Quartz BFW
Apple Patent Filing May Enable Transparent Texting:BFW
Height: Senate Judiciary to Resume Patent Reform BHTA
*SHARP TO MAKE LCD PANEL FOR NEW IPHONE AS EBFW
U.S. PRE-MARKET MOVERS: ADXS BAX C CAMT CLVSBFW
*CORRECT:SHARP TO PROVIDE LCD PANEL FOR APPLBFW
King and Quercus: what about the windfall FTI
Apple Patent Filing Suggests Sapphire Display: ApplBFW
BlackBerry Falls; SocGen Cuts, Sees $6/Share Sum ofBFW
Device Shipments to Rise 6.9% Worldwide This Year,BFW
IN CHINESE MEDIA: ‘Negative List’ for Brokerages, ABFW
Apple Store Workers Seek Stay In FLSA Case Until JusBLW
Apple Buys Hyundai Bonds as Investor Pool Widens:BN
Twitter Preparing New Music Strategy, WSJ SaysBFW
Labor Groups Challenge Apple on Chinese PlantsBLW
Apple to Increase Battery Orders to China’s Desay: DiBFW
*APPLE TO INCREASE BATTERY ORDERS TO CHINA'SBFW
Daily Briefing: Apple-Samsung, King Digital, DotcomBLW
Global Mobile Phones: Assess Industry ValuationsBI
Mobile Handset Industry Valuation Assessment: BI OBI
EU, China Deal to Lower Threat of Tariffs on Huawei, ZBFW
BlackBerry delays executive's Apple move FTI
Comcast's Power Unveiled Courtesy of Apple Rumor:BBO
Microsoft’s Mobile Suite May Challenge SAP, VMwarBI
Russia Govt Switches From Apple to Samsung TabletBFW
*APPLE LITTLE CHANGED, GIVES UP MOST OF EARLIEBFW
U.S. Stock Options With Biggest Changes in ImpliedBN
JAMF Software Enables Apple's New Enterprise FeatuMWR
Makor - TECH VIEW AAPL US (545 last) - close short pMKR
Gamco’s Ward Says Biggest Problem for Apple Is SizeBN
U.S. PRE-MARKET MOVERS: APP BODY CXDC FIVE GEBFW

AppleInsider: Review: Fitbit Ionic aims at Apple WatcBLG
AppleInsider: This week on AI: Apple AR glasses in 2BLG
Fox Business: Why Won't Apple Inc. Talk About iPhonNS1
Apple Has Several Big Strengths It Can Leverage In thTST
Apple's Booming Stock Price Could Gain Another 1TST
TheStreet.com: Apple's Booming Stock Price Could GNS1
Forbes: Carl Icahn Sold Apple Too Soon & It Cost HimFOR
Forbes: TripAdvisor Brands Hotels With Sexual AssaulFOR
Forbes: Apple Loop: Apple Confirms iPhone X ProbleFOR
MacRumors: Apple's iPhone X vs. Google's Pixel 2 XLBLG
AppleInsider: Video: Apple's Clips 2.0 puts you in thBLG
New York Post: Some iPhone X buyers report annoyiNYP
CBC: Apple admits some iPhone X models freeze upCBC
Smarter Analyst: 2 Sectors, 2 Top Stocks for 2018: ApBLG
The Top 10 Songs And Albums on the ITunes StoreAPW
Next Web: Some iPhone X displays plagued by mystBLG
Jekyll or Hyde? Does It Even Matter in High-Grade CrBFW
Rolling Stone: Gift Guide: The Best Smartwatches ofNS1
MacRumors: MacRumors Giveaway: Win Custom-PaiBLG
SlashGear: If the 2018 iPad with Face ID looks this goBLG
IBD: Stocks Down, Apple Still Solid; Will These 3 ChiIBD
San Jose Bus Jrn: Here's a look at 8 Bay Area startupNS1
Senate Plan Better for Business, But Corporate Tax CuBI
Apple Clips Selfie Scenes lets users put selfies on 36FEX
IBD: OLED Stock Displays Continued Strength, Hits RIBD
MacRumors: Apple's Extended 2017 Holiday ReturnBLG
AppleInsider: Some iPhone X owners report mysteryBLG
AppleInsider: Deals: 9.7" iPads for $299, 10.5" iPadBLG
Forbes: Apple iPhone X: Fix For Cold Weather ProbleFOR
AppleInsider: Apple Watch gets special Veterans DayBLG
Gizmodo: iPhone X Doesn't Work Right in the Cold,BLG
Apple Could Gain Another 12% From Here, TheStreeTST
IBD: Netflix, Apple Supplier Lead 5 Stocks Still Buys AIBD
Fortune: You're Not Alone: Some Users Report the ScFOT
MediaTek Diversifies Sales to IoT Even Amid Weak QBI
AppleInsider: Extreme test shows OLED iPhone X witBLG
MacRumors: Apple Community Envisions Better WayBLG
TheStreet.com: Why Apple Could Gain Another 12%NS1
How the ‘Warren Buffett of Arabia’ Built His FortuneBN
Investopedia: iPhone X Will Help Apple Beat SamsuNS1
Fast Company: Could The iPhone X’s Most Inane FeatNS1
The Fly: Canalys: iPhone 8 Plus out-ships iPhone 8 inNS1
[Delayed] Morning Research Summary OPY
The Fly: Apple acknowledges iPhone X becoming unrNS1
Apple Finally Fixes Annoying IPhone Autocorrect 'I' BTEL
Will Qualcomm Agree to a Deal With Broadcom? AskNYT
Next Web: Apple’s latest acquisition could enable betBLG
Barron's: Apple Supplier AAC Technologies Jumps toNS1
Fanuc's Rosy 2018 Order Outlook Amid Smartphone,BI
California Governor Avoids Criticizing U.S. Tech GiantBLW
MacRumors: Apple Launches New 'This Weekend OnBLG
Apple reiterated its commitment to diversity — but itBDR
Patently Apple: Apple Acquired InVisage with well ovBLG
HTC Vive VR Headset Waxes as Smartphones Wane:BI
Trending: Nutella Fans Flip Over Recipe Tweak; AppleWPT
AppleInsider: Apple acknowledges iPhone X becomiBLG
Apple and Tesla Make Low-Key Buys; Small Caps DroTST
Fox Business: Better Buy: Corning Incorporated vs. ANS1
MacRumors: Apple Working on Fix for Bug Causing iBLG
TheStreet.com: Apple and Tesla Make Low-Key Buys;NS1
TheStreet.com: Apple Has Several Big Strengths It CaNS1
Wells Fargo Clearing Services Adds Baker Hughes: 1BN
San Jose Bus Jrn: Apple buys Newark startup that offNS1
SiliconANGLE: Apple has quietly acquired quantum dWE1
We now know who makes the $14,000 chairs on AppBDR

Note. Retrieved from Bloomberg Terminal for AAPL top news on or shortly before stated
dates, with minor editorial changes. Bloomberg news sources in bold.
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5.3 Orbit Plot

Figure 5.18 News feed for
U.S. Economy.

China Profits Jump as Yi Sees Limited Effect From FeBN
Asian Stocks Fall as Kerry Says U.S. to Hold Syria AccoBN
FX DAYBOOK EUROPE: German Ifo Survey, U.S. ConsBFW
Bitcoin Meeting, OTC Derivatives, Trump University:BN
Insider Trading; Galleon’s Collapse: Top Business BoBN
N.J. Jail Is Home for Husband as Lifetime of AlimonyBN
Oil Gains With Yen on Syria as Asian Stocks, TreasurieBN
NORDIC DAYBOOK: Fed’s Williams, ECB’s Coeure, DaBFW
U.S. Natural Gas Declines After Gaining Third Time inBN
China a `Cloud' Over Emerging Markets, Condon SayBN
*CHINA CAN REACH 7.5% GROWTH TARGET, KEEP INBFW
U.S. Must Consider Spillover Effect of QE Exit, China’sBFW
*CHINA’S MONETARY POLICY TO REMAIN PRUDENT,BFW
*CHINA TO MAINTAIN PROACTIVE FISCAL POLICY, ZHBFW
130827 Technology Sector: Slightly improved sentiOIR
*US ‘MUST’ CONSIDER SPILLOVER EFFECTS OF QE EXIBFW
*BROOKFIELD AUSTRALIA CEO POWELL SPEAKS AT EBFW
Loans Deflecting Bond Rout Lure Western Asset: CreBN
*BRICS COUNTRIES WILL DISCUSS FX RESERVE POOLBFW
G-20 to Discuss Possible Impact From QE Exit, PBOC’sBFW
America Most Resilient Five Years From Worst GDP LoBN
Dealbook: Five Years After TARP, Misgivings on BonusNYT
Won Best in Asia as Traders Flee Rupee-to-Real Rout:BN
Falling aircraft demand hits US durable goods ordersFTI
Mortgage Plunge on Fed Taper Limiting Economy: CBN
Pimco’s Hodge Says Demand for Bonds to Recover: BBN
ASIA RATES/CREDIT DAYBOOK: China Profits, PhilippiBFW
Commodities Daybook: Corn, Soy Surge Most in MorBN
Will Obama Make the Fed Even Worse With SummerBBO
Hungary Set to Slow Rate-Cut Pace After Fed Signal oBN
The Strong Case for Optimism About U.S. Growth: A.BBO
All About the Velocity of Corporate Income GrowthSBY
Closing Bell: TSX little changed, durable goods data rNPW
Lew Tells Congress Treasury to Hit Debt Limit in Mid-BN
Mexican Peso Plunges Most Among Major CurrencieBN
U of Chicago’s Kashyap Discusses Key Jackson Hole PBN
SCOTIABANK ECONOMICS: CLOSING POINTS, AUGUSSCO
Breakeven Inflation Rate: Five-to-Ten-Year Forward (TBN
N.J. Jail Is Home for Husband as Lifetime of AlimonyBN
The Insiders: Bad News Is Good News for the ObamaWPT
U.S. Gasoline Prices for the Week of Aug. 26: SummaBN
Durable-Goods Drop Imperils Outlook for U.S. PickuBN
TSX little changed, durable goods data raises questioCNP
New York City Water Reservoirs Above Normal CapaciBN
Lipsky, Taylor Weigh in on Jackson Hole Debates(Audio)BN
BofA’s Harris Says Fed Won’t Start Taper in SeptembeBN
Fed Asks Judge to Leave Swipe Fee Rules Alone DuriBN
Lew Tells Congress Treasury to Hit Debt Limit in Mid-BN
U.S. Foreign Exchange Rates for the Week Ended AuBN
Ford’s Fusion Output Boost Tests $2,300 Premium OBN
U.S. Crop Progress and Conditions for Aug. 25: SumBN
Lew Tells Congress Treasury Will Hit Debt Limit in MiBFW
U.S. Treasury Statement and Cash Balance for Aug. 2BN
U.S. Diesel Prices for the Week of Aug. 26: SummaryBN
Yellen Has 45% Chance to Replace Bernanke, SummBFW
Fed Seeks Federal Circuit Writ To Block Deposition ofBLW
*U.S. TREASURY TO REACH DEBT LIMIT IN MID-OCT.:BFW
U.S. June Federal Reserve Finance Companies ReporBN
U.S. June Homebuyer Affordability Index: SummaryBN
Fed Asks Judge to Leave Swipe Fee Rules in Place DuBN
U.S. Raw Steel Production for the Week Ending Aug.BN
U.S. Poultry Condemned by Inspectors for July (TablBN
U.S. Chilled and Frozen Ready-To-Cook Poultry for JulBN
U.S. Poultry Slaughter and Live Weight for July (TablBN
U.S. Poultry Slaughter for July: Summary (Table) BN

Asia Rates/Credit Week Ahead: RBA, RBI Rate DecisioBFW
Fed’s Evans Says He Would Wait Until Early 2016 toBFW
Don't raise rates and keep inflation party going, saysSYH
*FED'S EVANS SAYS U.S. 1Q GROWTH PROBABLY BELBFW
Evans Sees Fed Raising Rates in Second Half of 2015BN
Global markets paused amidst better than expectedKCF
*EVANS: TIMING OF 1ST RATE INCREASE NOT AS IMPBFW
Evans Sees Fed Rates Near Zero ‘Well Into’ Next YearBN
*EVANS SAYS HE EXPECTS 1.25% FED FUNDS RATE ABFW
*FED'S EVANS SAYS HE'D WAIT UNTIL EARLY 2016 TOBFW
*EVANS SAYS FED WILL DO WHAT IT TAKES FOR GROBFW
Evans Sees Fed Raising Interest Rates in Second HalfBN
*FED'S EVANS SAYS INCREASING QE PROBABLY HASBFW
*FED WOULD HAVE MADE INTEREST RATES NEGATIVEBFW
For the US data docket today (28 March), the US consUOB
Citigroup ‘Stress Test’ Said to Send Corbat ScramblinBFW
Fed Retreat From Mortgages Nears Tipping Point: CreBLW
Pending Sales of Existing Homes In U.S. Decline for EBLW
Jobless Claims in U.S. Unexpectedly Decreased WeeBLW
Economy in U.S. Expands More Than Previously EstiBLW
China Faces `Mini' Debt Crisis, Rabobank's Every SayBN
FED’S EVANS SPEAKS ON U.S. ECONOMIC POLICY: LIBN
*FED'S EVANS SEES ZERO INTEREST RATE `WELL INTBFW
Fed’s Evans Sees Interest Rates Near Zero ‘Well Into’BFW
Closing Bell: TSX, Wall Street fall amid mixed readinNPW
Fed’s Evans Set to Speak on U.S. Economy, Policy in 5BFW
Fed's stress tests set bar high for Europe FTI
Fed under fire on 'opaque' stress tests FTI
Initial Jobless Claims Fell Unexpectedly In Latest WeBLW
Fed’s Evans Sees Rates Rising in 2H 2015, Would PreBFW
*EVANS SEES U.S. GROWTH RUN RATE ABOUT 3% REBFW
*FED'S EVANS SEES RATES RISING IN 2H 2015, WOUBFW
Paul Krugman: America’s Taxation Tradition NYT
U.S. Economy Grew 2.6 Percent in Fourth Quarter, BeWPT
*CORRECT:TARULLO COMPLACENCY OVER RISKS COBFW
*TARULLO: MORE WORK NEEDED TO ADDRESS RISKSBFW
Tarullo Defends Fed’s Move to Supervise Foreign BanBN
*TARULLO DEFENDS FED'S MOVE TO SUPERVISE FORBFW
Fed of 1970s Shows Capacity Clues May Mislead: CutBN
Best Start Since ’09 Defies Forecast of Annual Loss: MBN
Clarification: Federal Reserve stress tests FTI
INSIDE AUSTRALIA: AUD Strong Before U.S. GDP; RBSBFW
USA economy: Quick View - GM CEO to testify as recaEIU
ASIA RATES/CREDIT DAYBOOK: Japan Inflation; Fed’sBFW
Economists: Texas Economy Strong, Getting StrongerAPW
Banks Lending Like It’s 2007 Belied by Deposits: CreBN
U.S. Reports Modestly Better Economic Growth NYT
US economy shows signs of strength SYH
Yellen Might Help Asia Kick the Easy-Money Habit:BBO
Wal-Mart Sues Visa Claiming Card Transaction Fee CoBN
Top 300 Billionaires’ Wealth Falls to $3.581 Trillion (TBN
Euro Drops to 3-Week Low Against Pound on OutlooBN
Dick Bove Blasts Citi’s ‘Horrendous’ Error in MexicoBN
Action Economics’s Englund Says Fed Focus on RateBN
Contrarian Corner’s Eyes Results of 7-Year Note SalesBN
COULD THE BOC SERIOUSLY LAG THE FED SCO
St. Louis Federal Reserve Money Multiplier (Table)BN
Fewer Firings a Sign U.S. to Regain Growth MomentuBN
Maryland Business Activity for March (Table) BN
Breakeven Inflation Rate: Five-to-Ten-Year Forward (TBN
Carolinas Business Activity Decreased in March (TablBN
Federal Reserve Balance Sheet: Snapshot (Table) BN
Fed Balance-Sheet Assets Rise $4.9b to $4.227tBFW
U.S. Money Supply Components for Week Ending MBN
U.S. Mortgage-Backed Securities Purchase ProgramBN

U.S. President Barack Obama is happy with the job dSWM
Is the U.S. Strong Enough for Two Rate Hikes? BLC
Missouri Removing Box on Convictions From Job ApAPW
What a Stronger Yen Means for Investors BLC
Econs - US-The forgotten Unemployment Cohort-U1 tMIF
US economic data docket is very light today (12 Apr)UOB
ECB Counts 500-Euro Cost Even as Death of Cash SeeBN
IN FOCUS: BOJ’s Harada, India Inflation; Stocks, BonBFW
Fed’s Global Focus Keeps U.S. 10-Year Yields Near TwBN
SCOTIABANK ECONOMICS: Closing Points (April 11,SCO
Missouri Removing Box on Convictions From Job ApAPW
DOE Coal Prices by Region for the Week Ended AprilBN
U.S. Gasoline Prices for the Week of April 11: SummaBN
Obama, Fed Chair Yellen Discuss Outlook for EconomAPW
Former Yellen Adviser Unveils Plan for Fed ReformsBLC
Missouri Removing Box on Convictions From Job ApAPW
Fed's Kaplan on U.S. Economy, Policy Outlook (AudiBN
The Fed's Balancing Act With Inflation BLC
U.S. Foreign Exchange Rates for the Week Ended AprBN
Fed’s Kaplan Says Weak Data Show There’s No Need fBN
Which Party Will Benefit From the Weak Obama EconWPT
Obama Is `Pleased' With Yellen Amid Signs of SlowinBN
Stock Rally Stalls as Earnings Season Kicks Off BLC
White House Readout of Obama Meeting with Fed’sBFW
*OBAMA, YELLEN DISCUSSED NEAR, LONG-TERM GRBFW
Lew: I Hope We’ve Stopped Inversions Pipeline for aBFW
U.S. Raw Steel Production for the Week Ending AprilBN
*LEW: WE’LL HAVE EXCITING ANNOUNCEMENT SOOBFW
USDA Crop Progress by State for the Week of April 10BN
*LEW: PEOPLE SHOULDN'T BE SURPRISED WE TRIEDBFW
USDA Crop Conditions by State for the Week of AprilBN
U.S. Crop Progress for April 10: Statistical SummaryBN
Which Party Will Benefit From the Weak Obama EconWPT
U.S. Treasury Statement and Cash Balance for April 8BN
Fed’s Global Focus Keeps U.S. 10-Year Yields Near TwBN
*LEW: NO ONE ON HORIZON TO TAKE OVER U.S. ECOBFW
What Corporate Credit Says About Health of CorporatBLC
Bloomberg Economic Evaluation of States (Table)BN
Central Bank Watch: Countries, Rates, Changes (TablBN
White House Briefing: Obama-Yellen Meeting OutloBN
Top Forecasters of the U.S. Economy Q1 2016: RankiBN
Kaplan Says Weak First Quarter Means Now Not TimeBFW
*KAPLAN SAYS HE'S OPEN-MINDED ABOUT POLICYBFW
*KAPLAN: DATA DOESN'T SUPPORT A FED RATE MOVBFW
Obama Is ‘Pleased’ With Yellen, White House Says BBN
U.S. Diesel Prices for the Week of April 11: SummaryBN
Bloomberg Advantage: Todd on Housing, Health CarBBR
Kaplan Says Fed Should Be ‘Cautious, Patient’ WhenBFW
Obama `Cares Deeply’ About Preserving Fed IndepenBFW
Premature to Rule Out ‘Helicopter Drops,’ BernankeBFW
Obama to Meet With Fed Chair Yellen to Discuss US EAPW
Is the U.S. Economy About to Go Bankrupt? Here's HTST
*EARNEST SAYS DOESN'T EXPECT OBAMA TO UNDERBFW
Obama ‘Pleased’ With Way Yellen Has Done Job, EarBFW
Fed’s Kaplan Says Sub-Zero Rates an Option, PrefersBFW
WHAT’S PRICED IN: No Changes For BOE, BOC; No FeBFW
*FED’S KAPLAN: NEGATIVE RATES HAVE NUMBER OFBFW
*KAPLAN: GREATER DEBT IN ADVANCES ECONOMIESBFW
*EARNEST SAYS OBAMA `PLEASED' BY WAY YELLEN HBFW
What's Behind the Disconnect Between Stocks, BondBLC
Bloomberg Advantage: Penner on Positives of MarkeBBR
The Bloomberg Advantage: Cleveland on new ParadiBBR
Fed’s Fixed-Rate Reverse Repo Facility Draws $22.2bBFW
Fed’s Kaplan to Speak at Community Forum in 5 Min.BFW
Gallup Economic Confidence Tracking Poll Rises (TablBN

Pacific Nations Get Framework to Salvage Trade DealBN
APEC Ministers Vow to Fight Protectionism as TrumpBN
Top Predictions for U.S. Home Prices In 2018 TST
Trump Tours Asia; Brexit Debate; Art Sale: Week AheaBN
[Delayed] Large Cap Banks: Fed Weekly: C&I And CRJPM
US/EU/UK economy: Subsidence EIU
Predictions for 2018 U.S. Home Prices TST
Bloomberg Markets: NYU’s Lustbader on Crispr andBN
Bloomberg Markets: Dave Wilson’s Stock of the Day fBN
President Trump on China Trade Deficit; Interview WiAPW
Bloomberg Markets: Cordaro on Market ValuationsBN
Nobel Laureate Phelps on Inflation and Fed Policy (ViBLC
Business Insider: The Fed could be tightening more tBLG
U.S. Treasury Statement and Cash Balance for Nov. 9BN
Bloomberg Markets: Bond Report, Eco Brief for Nov.BN
Forbes: Simple, Bilateral Policy In A Complicated MulFOR
Dollar Drifts Lower in Week Focused on Tax Changes:BN
Federal Retirement Plan Rose to $511.7 Billion in JulBN
Mnuchin: ‘Minor Differences’ Between House and SeBFW
Central Bank Watch: Countries, Rates, Changes (TablBN
Fed’s Bullard Sceptical Low Unemployment Will Lift IBFW
U.S. INDUSTRIAL AGENDA: GE Investor Day, GoldmanBFW
Consumer Sentiment Slips in U.S., Yet Tax-Cut HopesBI
Gallup Poll: Trump Approval Rating 37%; DisapprovaBN
Fed’s Bullard: U.S. Growth Outlook Brighter, InflationBFW
Saudi Shakeup Drives Oil Gains, Tax Reform Hopes RBI
BI Economics: Other Regional Week Ahead SummariBI
Fed’s Bullard Says Gov. Powell Is Effective ConsensusBFW
*24 COUNTERPARTIES TAKE $39.7B AT FED'S FIXED-RBFW
*FED’S BULLARD SAYS FED POLICY RATE ABOUT RIGHBFW
Canada Rig Count Rose by 11 to 203 Week Ending NBN
U.S. Rig Count Rose by 9 to 907 Week Ending Nov. 1BN
Senate Plan Better for Business, But Corporate Tax CuBI
*NY FED BEGINS DAILY OVERNIGHT REVERSE REPO OBFW
Economics: Consumer Sentiment Slips, Tax-Cut HopeBBF
U.S. Repo Close: Old 3-Year Note at Lowest Rate, 0.8BN
Bloomberg Intelligence FICC Weekly Strategy BriefinBI
St. Louis Fed’s GDP Model Sees Q4 U.S. GDP at 2.9BN
St. Louis Fed Real GDP Nowcast Model Sees U.S. Q4BFW
Global Inflation Watch: World Inflation at 3.7% (TablBN
Global Inflation Watch: Economies Sorted by InflatioBN
Citi Economic Surprise Comparison by Region BN
U.S. Oct. ISM Regional Purchasers Index ComparisonBN
New York Fed’s GDP Model Sees 4Q U.S. GDP at 3.2%BN
U.S. REACT: Consumer Sentiment Slips, Yet Tax-Cut HBI
Houston Purchasing Index Rises for Second ConsecutBN
U.S. Consumer Sentiment Unexpectedly Falls From 1BN
U.S. October Wages Rose 3.4% Y/y: Atlanta Fed (TablBN
FastFT: US consumer sentiment gauge cools in NoveFTI
U-MICH ECONOMIST CURTIN ON NOV. PRELIM SENTIBN
U.S. Consumer Sentiment Unexpectedly Drops AmidBN
Nov. Preliminary Univ. of Michigan Sentiment ReportBN
Preliminary Nov. Michigan Sentiment Fell to 97.8, EsBFW
*MICHIGAN PRELIM. NOV. CONSUMER SENTIMENT ABFW
U.S. Nov. Prel. Michigan Consumer Sentiment (Table)BN
U.S. ECO PREVIEW: Univ. Mich Consumer SentimentBFW
GSC COMITÉ DIARIO DE ESTRATEGIA 10 NOVIEMBREGST
Powell Says Plan to Replace Libor Should Work: Risk.BFW
Donald Trump lauds PM Narendra Modi's economic rFEX
Quartz: What’s left to explain Janet Yellen’s dismissalNS1
GSC INFORME DIARIO DE ESTRATEGIA 10 NOVIEMBRGST
Fed May Have No Choice But to Accelerate Rate IncreBBO
Quarles in Charge? No, But He'll Dilute Dodd-FrankBI
UniCredit Global Economic Forecasts as of Nov. 10 (TBN
How will US companies use additional profits? IXS

Note. Retrieved from Bloomberg Terminal for U.S. Economy top news on or shortly before
stated dates, with minor editorial changes. Bloomberg news sources in bold.
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5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

5.4. INTERACTIVE PLOTS

We now present the last set of interactive plots to help researchers exploring dynamic phasal

relations of high-dimensional time series. These plots take on the familiar appearance of

heat maps—that is, they all use color gradients to encode level values—and therefore do

not need elaborations on their design.What’s new here are their interactive features and the

novel use of programming libraries not specifically developed for statistical research. Since

these libraries are bleeding-edge graphic toolkits for the Internet, through the example of

these elementary plots, we hope to motivate future research and development of web-based

interactive graphic tools to explore the dynamic structures of high-dimensional time series.

Since our focus here is to get familiar with novel plot features, to prevent us from being

distracted by the expository need to set up other examples of high-dimensional time series

which by their high-dimensionality need more space to contextualize and motivate, let’s

continue with the example of state unemployment rates introduced in Section 5.3.

Figure 5.19 presents a plot for lagged cross-correlations in the layout of a heat map,

where we plot out the lagged correlations of Alaska with all states (including itself and

D.C.) As before, the pivot component is marked by an asterisk (*). To better differentiate

color shades, we utilize the color schemes from ColorBrewer (the so-named 9-class RdPu

scale for positive correlations and PuBu for negative correlations), designed by Cynthia A.

Brewer at the GeoVISTA Center at Pennsylvania State University.

Since a major drawback of heat maps is that they do not scale well for panels of large

dimensions (see Section 5.1), in our example, rather than laying out all 512 × 60 = 156, 060

colored cells, we only display a small block of the cells (2% of the total number of cells) at

a time representing all autocorrelations and cross-correlations related to the pivot compo-
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5.4 Interactive Plots

Figure 5.19 Two modes of
interactive heat maps for
lagged correlations.

Note. Stacked correlation plot (a) with fixed coordinates, by state names shown; and (b)
with dynamic coordinates, by L0 correlation shown. Both plots truncated at Lag 30. Users
can toggle between the two modes by clicking the blue icons displayed. Mouse over each
cell gives correlation details.
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5 GRAPHIC TOOLS FOR HARMONIC ANALYSES OF TIME SERIES

nent (Alaska) and instead allow users to interact with the plot and explore other blocks

of cells of their choosing. Users can switch between the pivot component by clicking on

an arbitrary colored cell on the plot: on mouse release, the plot will display a subtle tran-

sition animation originated from the click point to remind users of the click event before

presenting a new plot for the pivot component chosen.

Another problem of heat maps is that because of the grid layout, ironically it is often

difficult to tell what coordinates each cell has, especially for those lie towards the center

of a heat map, far away from both axes. This navigational problem is exacerbated for high-

dimensional datasets. Heat maps like Figures 5.2 and 5.4 give intuitive presentations of

the overall levels of cross-correlations in the dataset but are impossible to navigate due to

the high dimensionality. Our new plot offers an easy solution. Since each cell is rendered

as a distinct node on the Document Object Model (DOM) tree for the plot (see Section

5.5), with simple JavaScripts to manipulate the DOM structure, we can provide additional

interactive features to help users navigate the plot.

A tooltip automatically appears above the mouse cursor if the user’s mouse hovers over

a cell for a specified duration of time: the tooltip element dynamically displays detailed

information about the cell, including the correlation pair (e.g., “Alaska-Colo.”, the former

is the pivot component), the lag level (e.g., “L5”), and the correlation value calculated (e.g.,

“.527”). In addition, to easily sift out components with significant correlations, users have

the option to sort the cells by correlations. To toggle between the two sort modes, users

can click either the button labeled Alpha (by alphabetical order of a predefined array of

variable names, in the current example, the two-letter postal abbreviations of all U.S. states

and D.C.) or the one labeled L0 Corr (by Lag-0 Correlations). Both interactive features

are implemented for all applicable plots presented in this section.
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5.4 Interactive Plots

5.4.1 TUNNEL PLOT

Building upon the classical heat map design, we now introduce an improved lagged cor-

relation plot, the tunnel plot (see Figure 5.20). Its atypical circular look is the natural

solution to this classical infographic design problem: we want a long axis to arrange the

large collection of variables but we also desire a large plotting canvas to fit in all the colored

cells for different lags. Since the circle is the plane curve enclosing the maximum area for

a given arc length, it is natural to arrange the collection of variables around a circle. This

also gives a clear indication that all variables are a priori equally important, as there is no

preferred radial direction on a circle. And since correlations typically decay along the lags,

the first a few lags are usually more informative: we arrange them on the larger rings to-

wards the circular boundary. The end result resembles the view looking along the interior

of a tunnel of correlations from the lag-0 correlations into the correlations of later lags.

Besides the general interactive features described above (mouse-over tooltips, mouse-

click refresh of the pivot component, and sort-mode toggles), the tunnel plot has two more

slider controls. Users can increase or decrease the view depth of the tunnel plot with the

maximum lag slider control (labeled Max Lag : Figure 5.21 illustrates the behavior. By

decreasing the maximum lag and focusing on the earlier lags, users can perform correla-

tion screenings with smaller tunnel plots, similar to the procedure introduced with the

staff plots (Figure 5.9). We have also included the minimum correlation slider control (la-

beled Min Corr , see Figure 5.22 for its behavior) that allows users to place a minimum

correlation threshold on the plot. This removes unwanted cells representing insignificant

correlations from the plot and declutters the plot for faster correlation screenings. Again,

since correlations typically decay along the lags, later lags usually become unnecessary for
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higher minimum correlation thresholds: the tunnel plot automatically decreases the view

depth as users increase the minimum correlation threshold sliders, though users can over-

ride the automatic adjustment by manually sliding the maximum lag control again.

The tunnel plot and the staff plot presented in Section 5.2 are two strikingly different

graphic tools for the same purpose. Both are designed to visualize lagged cross-correlations

of high-dimensional time series: the latter encodes the data triad (secondary variable–

lag–correlation) purely geometrically with 3-dimensional positions, while the former, a

2-dimensional plot, sheds the third dimension altogether thanks to the color coding of cor-

relation levels. We intentionally keep the same unemployment rate example, so that users

can compare and pick the tool of their liking. Since we have analyzed the example earlier

in our primer to the staff plot, the more exotic plot, further elaboration is not needed. We

will present a purely technical comparison of these tools in the concluding section.
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5.4 Interactive Plots

Figure 5.20 Two modes of
interactive tunnel plots.

Note. (a) Tunnel plot with fixed coordinates, by state names shown; and (b) tunnel plot with
dynamic coordinates, by L0 correlation shown. Users can toggle between the two modes
by clicking the blue icons displayed. Mouse over each cell gives correlation details.
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Figure 5.21 Adjusting
tunnel plot view depth.

Note. Maximum lag: (a) 12; (b) 36; and (c) 60. Users can adjust the view depth by dragging
the slider control labeled Max Lag .
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Figure 5.22 Adjusting
tunnel plot correlation
threshold.

Note. Minimum correlation (in absolute value): (a) 0; (a) 0.5; and (a) 0.8. Users can adjust
the correlation threshold by dragging the slider control labeled Min Corr .
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5.4.2 IMPULSE RESPONSE PLOT

Having offered a wide array of descriptive graphic tools for high-dimensional time series,

we now present a useful plot for model checking, namely the interactive impulse response

plot, see Figure 5.23(a) and 5.24(a). With the code base developed for previous plots,

the impulse response plot comes for free, since presentation-wise it is simply a stacked

correlation plot transposed, cf., Figure 5.19, even though the color gradient now encodes

different information. To avoid possible confusions, we now adopt a different color scale:

this is also suited because unlike correlations, impulse response functions are not bounded

between –1 and 1.

Since our task is to visualize impulse response functions, we assume readers have already

built a plausible multivariate time series model; performed basic model checking and re-

finement; and obtained the impulse response functions as data frames to some given inno-

vations. To continue our example of the U.S. unemployment rates, we first build a VAR(4)

model with the VAR function in the MTS package for R. We perform simple model refine-

ment and simplification with its refVAR function and model checking with the MTSdiag

function. Subsequently, we obtain the impulse response functions with the VARirf func-

tion with orthogonal unit innovations. Readers can refer to standard textbooks on time

series modeling, e.g., Tsay (2013) and Tsay (2014), for details.

As before, users can obtain detailed information for each cell by triggering mouse-over

event. However, since the color scale is no longer canonical and changes from case to case,

users cannot be reasonably expected to read the new gradient with proficiency. To help

them processing the diverse shapes in impulse responses, we also automatically present a

small line plot at the bottom panel, triggered by the same mouse-over event, see Figure
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5.23(b) and 5.24(b), in addition to the tooltips displayed above the mouse cursor. Similarly,

users can change the innovation by clicking any colored cell on the plot: this changes

the innovation to a unit shock in the variable of that row. We also add subtle transition

animations as visual feedbacks to different types of mouse events, in order to improve

user experience and direct users’ attention to the elements updated. In addition to the

standard interactive features of the suite, users can also toggle between Transient and

Accumulated responses, provided they have obtained these data frames separately from

a third-party tool, for example, the VARirf function in the MTS package for R.

Now that we have presented a suite of interactive graphic tools for both data exploration

and model checking, we could juxtapose them and compare how the impulse response

functions predicted by a time series model fare against the correlation structures observed

in the data. In fact, since all plots are rendered as individual DOM nodes in the same

client browser using the identical JavaScript libraries, code savvy researchers can interact

with multiple plots at runtime and develop more sophisticated graphic tools by chaining

these basic plots. Figures 5.25 and 5.26 provide a simple example.
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Figure 5.23 Interactive
impulse response plot:
transient mode.

Note. (a) Heat map of impulse responses to orthogonal innovation in Alaska, displaying
after left mouse click on Alaska row; and (b) line plot of New Hampshire to innovation
in Alaska, displaying on mouse over N.H. row. Users can switch on the transient response
mode by clicking the blue icon displayed.
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Figure 5.24 Interactive
impulse response plot: ac-
cumulative mode.

Note. (a) Heat map of impulse responses to orthogonal innovation in Alaska, displaying
after left mouse click on Alaska row; and (b) line plot of New Hampshire to innovation
in Alaska, displaying on mouse over N.H. row. Users can switch on the transient response
mode by clicking the blue icon displayed.
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Figure 5.25 Examples of
different impulse response
plots.

Note. Transient responses to orthogonal innovations in (a) Maryland; (b) Colorado; (c)
Wisconsin; and (d) Oklahoma. The impulse response plot can be used in conjunction with
the tunnel plot to compare modeled responses to correlations exhibited by the data, cf.
Figure 5.26. 118
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Figure 5.26 Examples of
different tunnel plots for
comparison.

Note. Lagged correlations of (a) Maryland; (b) Colorado; (c) Wisconsin; and (d) Oklahoma.
The tunnel plot can be used in conjunction with impulse response plot to compare corre-
lations exhibited by the data to modeled responses, cf. Figure 5.25.
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5.5. TECHNICAL NOTE

The 3-dimensional dynamic staff and orbit plots are implemented in R using the rgl pack-

age (Adler et al., 2018, 3D Visualization Using OpenGL). To improve readability of the

source code, we further use the findPeaks and findValleys functions in the quantmod

package (Ryan and Ulrich, 2018, Quantitative Financial Modeling Framework) to obtain

local extrema. Scenes of the plots are then exported to the HTML and JavaScript format

using WebGL (Web Graphics Library), a JavaScript API for rendering interactive 2- and

3-dimensional graphics within compatible web browsers without the need for additional

plug-ins, for post processing. Since the Open Graphics Library (OpenGL) was designed

more than a quarter century ago to interact with a graphics processing unit (GPU) for

hardware-accelerated rendering and R is not suited for high-performance GPU computing,

the rendering process implemented is very slow (20min per frame) on a consumer-grade

computer. (In June 2018, Apple deprecated OpenGL APIs on all of their platforms in favor

of Metal 2, its own low-level APIs for near-direct access to the GPU.) To circumvent the

performance problem, we export all rendered frames as PNGs (Portable Network Graphics)

andmanipulate these processed images with jQuery, a standard JavaScript library designed

to simplify the client-side scripting. Performance-conscious researchers can optimize these

plots for specific applications and, without relying on proprietary libraries, implement

these 3-dimensional plots with basic JavaScript functions or three.js, a JavaScript library

for creating and displaying animated 3-dimensional computer graphics in a web browser

with WebGL. This solves the performance problem. However, since all graphic objects are

hiding behind a rasterized canvas DOM using WebGL, limited interactive features can be

convincing implemented.
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In order bypass current technological limitations on developing general-purpose 3-

dimensional statistical graphic tools, the tunnel plot and the impulse response plot take a

completely different approach. To avoid the performance bottleneck of R, we process all sta-

tistical computing in R first, for example through the MTS package (Tsay, 2015, All-Purpose

Toolkit for Analyzing Multivariate Time Series and Estimating Multivariate Volatility Mod-

els), and export the correlations and impulse response functions as data frames. This can

be easily done in R with the as.data.frame and the write.csv functions. We render the

plots procedurally in the web browser as SVGs (Scalable Vector Graphics), a XML-based

plain text format for 2-dimensional vector images, with D3.js (Data-Driven Documents),

a JavaScript library for producing dynamic and interactive visualizations in web browsers.

As before, we use jQuery to code additional interactive functionalities.

Supplementary materials to the manuscript, including all source code and live demon-

strations of the plots introduced, are available through the online archive of the disserta-

tion project at home.uchicago.edu/dwood/thesis. We have packaged the source code for

each plot as a standalone JavaScript library. Readers can also find further documentation

on how to generate these plots from their own data sets by downloading the source code

or through the web interface provided. All source code are provided “as is” and licensed

under the MIT License.
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